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Abstract The study of delay-fractional differential equations (fractional DEs)
have recently attracted a lot of attention from scientists working on many dif-
ferent subjects dealing with mathematically modeling. In the study of frac-
tional DEs the first question one might raise is whether the problem has a
solution or not. Also, whether the problem is stable or not? In order to en-
sure the answer to these questions, we discuss the existence and uniqueness of
solutions (EUS) and Hyers-Ulam stability (HUS) for our proposed problem, a
nonlinear fractional DE with p-Laplacian operator and a non zero delay τ > 0
of order n− 1 < ν∗, ϵ < n, for n ≥ 3 in Banach space A. We use the Caputo’s
definition for the fractional differential operators Dν∗

, Dϵ. The assumed frac-
tional DE with p-Laplacian operator is more general and complex than that
studied by Khan et al. Eur Phys J Plus, (2018);133:26.

Keywords Hybrid fractional differential equations, Hyers-Ulam stability,
Caputo’s fractional derivative, existence and uniqueness, topological degree
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1. Introduction
Recently, mathematical modeling with the help of fractional DEs have caught the at-
tention of researchers in several applied scientific fields in the previous two decades.
These models can be studied in real life in the fields like signals, biology, viscoelastic
theory, computer networking, control theory, set theory, fluid dynamics, hydrody-
namics, image processing, and many others [7, 13,24,40,41].

Different research aspects of FDEs have been considered by scientists through
numerous mathematical procedures. Cabada et al. [3] studied EUS of nonlinear
fractional DEs and gave applications. Hu et al. [16] investigated a system of FDEs
involving nonlinear φ∗

p-operator at resonance for the existence theorems and gave
some applications. Zhang et al. [47] considered existence results for fractional DE
with φ∗

p-operator and multi points boundary conditions at resonance with the help of
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Mawhin’s theorem and provided application. Mahmudov and Unul [35] considered
a FDE where the order ϵ ∈ (2, 3] having integral conditions for existence crite-
ria. They also studied existence theorems for an impulsive FDE [37] and nonlinear
FDE involving φ∗

p as a p-Laplacian operator [36]. Jiang et al. [21] studied exis-
tence theorems for fractional DEs with φ∗

p operator at resonance by using Mawhin’s
coincidence theory and provided applications.

Recently, some scientists worked on fractional DEs with singularities for the
analysis of existence results and applications. For example, Zhang and Liu [48]
studied existence theorems for fractional DEs with multi point boundary conditions
with the help of Mawhin’s theorems and present an application of their results. Liu
et al. [31] investigated EUS for a class of singular fractional DEs using index theory.
Guo et al. [11] proved uniqueness theorems for position solutions of a singular
fractional DE with nonlinear φ∗

p-operator and Riemann-Stieltjes type boundary
conditions. Vong [45] used the upper lower solution method with fixed point theorem
for the study of a fractional DE with a singularity and integral boundary conditions.
For some more related results, we suggest the readers [26,28].

The study of fractional DEs with delay have also been studied by several scien-
tists. For instance, Zhang et al. [49] considered fractional order stochastic differen-
tial equations with multiple delays. Thanh et al. [43] investigated stability results
for fractional DE in Caputo’s sence with time-delay. Cong and Tuan [6] studied
global solutions, exponential boundedness, existence and uniqueness for a class of
fractional DEs with delay. Deng et al. [9] proved stability results for a system
of fractional DEs with delays and provided applications. Haristova and Tunc [14]
studied fractional order integro-differential equations with delays using the Caputo’s
definition of fractional derivative.

To the best of our study in the field, no one considered delay fractional DEs of
higher order with singularity and p-Laplacian operator for the EUS and stability
analysis. Motivated by the above cited works, we use fixed point theorems for the
study of EUS and HU-stability of fractional DE with singularity and φ∗

p-operator
of the kind: 

Dν∗[
φ∗
p[Dϵx(t)]

]
= −Ω(t)ξ∗(t, x(t− η∗)),(

φ∗
p[Dϵx(t)]

)(i)|t=0 = 0, i = 0, 1, 2, . . . , n− 1,

x′(1) = 0, x(1) = x′(0), x(j)(0) = 0, j = 2, 3, . . . , n− 1,

(1.1)

where n − 1 < ϵ, ϵ ≤ n, n ≥ 3 and ξ∗(t, x(t − η∗)), Ω(t) are continuous while
singular at some points. The fractional derivatives Dϵ, Dϵ are in the Caputo’s
sense, φ∗

p(r) = |r|p−2r is nonlinear φ∗
p-operator satisfying that 1/q + 1/p = 1 and

φ∗
p
−1 = φ∗

q . The suggested fractional DE with φ∗
p is more extended and complicated

than the problems considered in [34,42].
In literature, no valuable consideration has been given to the subject area of the

paper. Therefore, our results are based on the importance of the study, i.e., EUS
and stability of the problem (1.1). For these aims, we will convert the problem to an
alternate integral form of fractional order with the help of the corresponding Green
function Gϵ(t, s) and the Green function will be examined to know its nature for the
increase or decrease of the function in the assumed interval (0, 1]. After these, with
the use of fixed point theorems the EUS will be proved and HUS will be derived.
For the application of the results, we give an illustrative example.
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Definition 1.1 ( [13, 40, 41]). For ϵ > 0 and a function ψ : (0,+∞) → R, the
integral of arbitrary order is defined as

Iϵψ(t) =
1

Γ(ϵ)

∫ t

0

(t− η)ϵ−1ψ(η) dη,

provided that the integral is defined on interval (0,+∞) and

Γ(ϵ) =

∫ +∞

0

e−ssϵ−1ds.

Definition 1.2 ( [13, 40, 41]). Let ψ(t) : (0,+∞) → R, be a continuous function.
Then the fractional order Caputo’s derivative of order ϵ > 0 is given by

Dϵψ(t) =
1

Γ(r − ϵ)

∫ t

0

(t− s)k−ϵ−1ψ(k)(s)ds,

for [ϵ] + 1 = r, where [ϵ] represents the integeral part of ϵ, such that, the integral is
defined on (0,+∞).

Lemma 1.1 ( [13,40,41]). For andψ ∈ Cn−1, ϵ ∈ (n− 1, n], we have

IϵDϵψ(t) = ψ(t) +m0 +m1t+m2t
2 + . . .+mn−1t

n−1,

for mk ∈ R for k = 0, 1, 2, ..., n− 1.

Theorem 1.2 ( [10]). Let A be a Banach space and assume Q ⊂ A be a cone.
Suppose that V1,V2 are two bounded subsets of A such that 0 ∈ V1, V1 ⊂ V2, and
the operator F∗

0 : Q ∩ (V2\V1) → Q is continuous and such that
(N1) ∥F∗

0 z∥ ≤ ∥z∥ if z ∈ Q ∩ ∂V1 and ∥F∗
0 z∥ ≥ ∥z∥ if z ∈ Q ∩ ∂V2, or

(N2) ∥F∗
0 z0∥ ≥ ∥z∥ if z ∈ Q ∩ ∂V1 and ∥F∗

0 z∥ ≤ ∥z∥ if z ∈ Q ∩ ∂V2.
Then F∗

0 has fixed point in Q ∩ (V2\V1).

Lemma 1.3 ( [27]). For the φ∗
p, we have

(1) If γ∗1γ2 > 0, 1 < p ≤ 2, and |γ∗1 |, |γ∗2 | ≥ ρ > 0, then

|φ∗
p(γ

∗
1)− φ∗

p(γ
∗
2)| ≤ (p− 1)ρp−2|γ∗1 − γ∗2 |.

(2) If |γ∗1 |, |γ∗2 | ≤ ρ∗, p > 2, then

|φ∗
p(γ

∗
1)− φ∗

p(γ
∗
2)| ≤ ρ∗p−2(p− 1)|γ∗1 − γ∗2 |.

2. Green function and properties
Theorem 2.1. The (1.1) is equivalent to

x(t) =

∫ 1

0

Gϵ(t, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1Ω(ζ0)ξ

∗(ζ0, x(ζ0))
)
dζ0ds, (2.1)

where Gϵ(t, s) is defined as

Gϵ(t, s) =

{−(t−s)ϵ−1

Γ(ϵ) + (1−s)ϵ−1

Γ(ϵ) + t(1−s)ϵ−3

Γ(ϵ−1) , s ≤ t,
(1−s)ϵ−1

Γ(ϵ) + t(1−s)ϵ−3

Γ(ϵ−1) , s ≥ t.
(2.2)
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Proof. Applying the fractional integral operator Iν∗ to (1.1) and by the virtue of
Lemma 1.1, we have the alternate form of the problem (1.1) as below

φ∗
p[Dϵx(t)] = −Iν∗[

Ω(t)ξ∗(t, x(t− η∗))
]
+ c1 + c2t+ c3t

2 + . . .+ cnt
n−1. (2.3)

By
(
φ∗
p(Dϵx(t))

)(i)

|t=0 = 0, we imply c1 = c2 = . . . = cn = 0. Then (2.3), implies

φ∗
p

(
Dϵx(t)

)
= −Iν∗[

Ω(t)ξ∗(t, x(t− η∗))
]
. (2.4)

With the help of (2.4), we have

Dϵx(t) = −φ∗
q

(
Iν∗[

Ω(t)ξ∗(t, x(t− η∗))dt
])
. (2.5)

Using integral operator of fractional order Iϵ to (2.5) and using Lemma 1.1 again,
we have

x(t) = −Iϵ
(
φ∗
q(Iν∗[

Ω(t)ξ∗(t, x(t−η∗)))
])

+m1+m2t+m3t
2+ . . .+mnt

n−1. (2.6)

By x(j)(0) = 0 for j = 2, 3, . . . , n−1 in (2.6), we get m1 = m2 = m4 = . . . = mn = 0.
From condition x′(1) = 0, we have

k2 = Iϵ−1
(
φ∗
q(Iν∗[

Ω(t)ξ∗(t, x(t)))
])

|t=1. (2.7)

Now with the help of the boundary condition x(1) = x′(0), we have m1 = Iϵ−1
(
φ∗
q

(Iν∗[
Ω(t)ξ∗(t, x(t − η∗)))

])
|t=1. Thus, using the values of mi (i = 1, 2, . . . , n) in

(2.6), we obtain

x(t)=−Iϵ
(
φ∗
q(Iν∗[

Ω(t)ξ∗(t, x(t− η∗)))
])
+Iϵ−1

(
φ∗
q(Iν∗[

Ω(t)ξ∗(t, x(t− η∗)))
])

|t=1

+ tIϵ−1
(
φ∗
q(Iν∗[

Ω(t)ξ∗(t, x(t− η∗))
])

|t=1

=
[
−
∫ t

0

(t− s)ϵ−1

Γ(ϵ)
+

∫ 1

0

(1− s)ϵ−1

Γ(ϵ)
+ t

∫ t

0

(t− s)ϵ−1

Γ(ϵ)

]
(2.8)

φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)ξ

∗(ζ0, x(ζ0 − η∗))
]
dζ0

)
ds

=

∫ 1

0

Gϵ(t, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(t)ξ∗(ζ0, x(ζ0 − η∗))

]
dζ0

)
ds,

where Gϵ(t, s) is well defined by (2.2).

Lemma 2.2. The function Gϵ(t, s) defined by the equation (2.2) satisfies the fol-
lowing relations:

(N1) 0 < Gϵ(t, s) for all s, t ∈ (0, 1);
(N2) the function Gϵ(t, s) is increasing in t and Gϵ(1, s) = maxt∈[0,1] Gϵ(t, s);
(N3) Gϵ(t, s) ≥ tϵ−1 maxt∈[0,1] Gϵ(t, s) for s, t ∈ (0, 1).
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Proof. In order to prove (N1), we consider two cases.
Case 1: For s ≤ t, consider

Gϵ(t, s) = − (t− s)ϵ−1

Γ(ϵ)
+

(1− s)ϵ−1

Γ(ϵ)
+ t

(1− s)ϵ−3

Γ(ϵ− 2)

= −tϵ−1 (1−
s
t )

ϵ−1

Γ(ϵ)
+

(1− s)ϵ−1

Γ(ϵ)
+ t

(1− s)ϵ−3

Γ(ϵ− 2)
(2.9)

≥ −tϵ−1 (1− s)ϵ−1

Γ(ϵ)
+ tϵ−1 (1− s)ϵ−1

Γ(ϵ)
+ tϵ

(1− s)ϵ−2

Γ(ϵ− 1)

≥ 0.

Case 2: For 0 < t ≤ s, we have

Gϵ(t, s) =
(1− s)ϵ−1

Γ(ϵ)
+ t

(1− s)ϵ−3

Γ(ϵ− 2)
> 0. (2.10)

With (2.9) and (2.10), it is proved that Gϵ(t, s) > 0 for all 0 < s, t < 1.
For (N2), we consider the following cases.

Case 1: For s ≤ t,
∂

∂t
Gϵ(t, s) = − (t− s)ϵ−2

Γ(ϵ− 1)
+

(1− s)ϵ−2

Γ(ϵ− 1)

≥ −tϵ−2 (1−
s
t )

ϵ−2

Γ(ϵ− 1)
+ tϵ−2 (1− s)ϵ−2

Γ(ϵ− 1)
(2.11)

≥ −tϵ−2 (1− s)ϵ−2

Γ(ϵ− 1)
+ tϵ−2 (1− s)ϵ−2

Γ(ϵ− 1)
> 0.

Case 2: For 0 < t ≤ s < 1, we obtain
∂

∂t
Gϵ(t, s) =

(1− s)ϵ−2

Γ(ϵ− 1)
> 0. (2.12)

By (2.11) and (2.12), we have ∂
∂tG

ϵ(t, s) > 0 for s, t ∈ (0, 1) which implies the
Gϵ(t, s) is increasing with respect to t. Therefore, for t ≥ s, we get

max
t∈[0,1]

Gϵ(t, s) =
(1− s)ϵ−1

Γ(ϵ− 1)
= Gϵ(1, s). (2.13)

Similarly, for s ≥ t, we have

max
t∈[0,1]

Gϵ(t, s) =
(1− s)ϵ−1

Γ(ϵ)
+

(1− s)ϵ−2

Γ(ϵ− 1)
= Gϵ(1, s). (2.14)

For (N3), we presume the following two cases.
Case 1: For t ≥ s, we have

Gϵ(t, s) = − (t− s)ϵ−1

Γ(ϵ)
+

(1− s)ϵ−1

Γ(ϵ)
+ t

(1− s)ϵ−3

Γ(ϵ− 2)

≥ −tϵ−1 (1−
s
t )

ϵ−1

Γ(ϵ)
+
tϵ−1

Γ(ϵ)
(1− s)ϵ−1 +

tϵ−1

Γ(ϵ− 2)
(1− s)ϵ−3 (2.15)

≥ −tϵ−1 (1− s)ϵ−1

Γ(ϵ)
+ tϵ−1 (1− s)ϵ−1

Γ(ϵ)
+ tϵ−1 (1− s)ϵ−3

Γ(ϵ− 2)

= tϵ−1 (1− s)ϵ−3

Γ(ϵ− 2)
= tϵ−1 max

t∈[0,1]
Gϵ(t, s) = tϵ−1Gϵ(1, s).
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Case 2: Consider s ≥ t. Then

Gϵ(t, s) =
(1− s)ϵ−1

Γ(ϵ)
+ t

(1− s)ϵ−3

Γ(ϵ− 2)

≥ tϵ−1 (1− s)ϵ−1

Γ(ϵ)
+ tϵ−1 (1− s)ϵ−3

Γ(ϵ− 2)
(2.16)

= tϵ−1 max
t∈[0,1]

Gϵ(t, s) = tϵ−1Gϵ(1, s).

By (2.15) and (2.16), the proof of (N3) is completed.

3. Existence results
We assume the space A = C[0, 1] with a norm ∥x∥ = maxt∈[0,1]{|x(t)| : x ∈ A} and a
cone P of non-negative functions of A, where P = {x ∈ A : x(t) ≥ tϵ∥x∥, t ∈ [0, 1]}.
Let Z(r) = {x ∈ P : ∥x∥ < r} and having boundary ∂Z(r) = {x ∈ P : ∥x∥ = r}.

By Theorem 2.1, the system (1.1) is equivalent to

x(t) =

∫ 1

0

Gϵ(t, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)ξ

∗(ζ0, x(ζ0 − η∗))
]
dζ0ds

)
. (3.1)

Let F∗
0 : P\{0} → A by

F∗
0x(t) =

∫ 1

0

Gϵ(t, s)φ∗
q

( ∫ 1

0

Gν∗
(s, ζ0)

[
Ω(ζ0)ξ

∗(ζ0, x(ζ0 − η∗))
]
dζ0

)
ds. (3.2)

With the Theorem 2.1, a solution x(t) of (1.1), is equivalent to fixed point of F0:

x(t) = F∗
0x(t). (3.3)

We assume the following conditions:

• (P1) ξ
∗ : ((0, 1)× (0,+∞)) → [0,+∞) is continuous;

• (P2) Ω : (0, 1) → [0,+∞) is continuous on (0, 1) and non vanishing and
∥Ω∥ = maxt∈[0,1] |Ω(t)| < +∞;

• (P3) For of a1,M∗
ξ∗ positive constants and k1 ∈ [0, 1], the function ξ∗ satisfies

|ξ∗(t, x(t− η∗))| ≤ φ∗
p

(
a1|x(t)|k1 +M∗

ξ∗
)
;

• (P4) For a constant λξ∗ > 0 and all u, v ∈ A,

|ξ∗(t, x(t− η∗))− ξ∗(t, v(t− η∗))| ≤ λξ∗ |x(t)− v(t)|.

Theorem 3.1. Assume that conditions (P1)− (P3) are fulfilled. Then the operator
F∗

0 is completely continuous operator.

Proof. Let x ∈ Z(r2)\Z(r1), then by Lemma 2.2 and (3.2), we have

F∗
0x(t)=

∫ 1

0

Gϵ(t, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s−ζ0)ν
∗−1

[
Ω(t)ξ∗(ζ0, x(ζ0−η∗))

]
dζ0

)
ds

≤
∫ 1

0

Gϵ(1, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s−ζ0)ν
∗−1

[
Ω(ζ0)ξ

∗(ζ0, x(ζ0−η∗))
]
dζ0

)
ds,

(3.4)
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F∗
0x(t) =

∫ 1

0

Gϵ(t, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)ξ

∗(ζ0, x(ζ0 − η∗))
]
dζ0

)
ds

≥ tϵ−1

∫ 1

0

Gϵ(1, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)ξ

∗(ζ0, x(ζ0−η∗))
]
dζ0

)
ds.

(3.5)
From (3.4) and (3.5)

F∗
0x(t) ≥ tϵ−1∥F∗

0u∥, t ∈ [0, 1]. (3.6)

This implies F∗
0 : Z(r2)\Z(r1) → P. Now, we show that F∗

0 is continuous, for this
we need ∥F∗

0 (un)−F∗
0 (u)∥ → 0 as n→ ∞, to see this, consider

|F∗
0un(t)−F∗

0x(t)|

=
∣∣ ∫ 1

0

Gϵ(t, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)ξ

∗(ζ0, un(ζ0 − η∗))
]
dζ0

)
ds

−
∫ 1

0

Gϵ(t, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)ξ

∗(ζ0, x(ζ0 − η∗))
]
dζ0)ds

)∣∣ (3.7)

≤
∫ 1

0

∣∣Gϵ(t, s)
∣∣∣∣∣φ∗

q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)ξ

∗(ζ0, un(ζ0 − η∗))
]
dζ0

)
ds

− φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)ξ

∗(ζ0, x(ζ0 − η∗))
]
dζ0

)∣∣∣ds.
With the help of (3.7) and the continuity of ξ∗, we have |F∗

0un(t)−F∗
0x(t)|→0 as

n→ +∞, which shows that F∗
0 is continuous.

Now, for the uniformly boundedness of F∗
0 , by (3.2) and (Ω1), we get

|F∗
0x(t)| =

∣∣ ∫ 1

0

Gϵ(t, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)ξ

∗(ζ0, x(ζ0 − η∗))
]
dζ0

)
ds
∣∣

=

∫ 1

0

|Gϵ(t, s)|φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
|Ω(ζ0)ξ∗(ζ0, x(ζ0 − η∗))|

]
dζ0

)
ds

≤
∫ 1

0

|Gϵ(1, s)|φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1∥Ω∥φ∗

p

(
a1∥x∥k1 +M∗

ξ∗
)
dζ0

)
ds

≤
( 2

Γ(ϵ+ 1)
+

1

Γ(ϵ)

)[ 1

Γ(ν∗ + 1)

]q−1∥Ω∥q−1
(
a1∥x∥k1 +M∗

ξ∗

)
= ∆∗

1∥Ω∥q−1
(
a1∥x∥+M∗

ξ∗

)
,

(3.8)
where ∆∗

1 =
(

2
Γ(ϵ+1) +

1
Γ(ϵ)

)[
1

Γ(ν∗+1)

]q−1. By (3.8), the operator F∗
0 : Z(r2)\Z(r1)

is uniformly bounded.
Now for the equicontinuity of the operator F∗

0 , by (P3), Theorem 2.1 and (3.2),
for any t1, t2 ∈ [0, 1], we have

|F∗
0x(t1)−F∗

0x(t2)|

=
∣∣∣ ∫ 1

0

Gϵ(t1, s)φ
∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)ξ

∗(ζ0, x(ζ0 − η∗))
]
dζ0)ds

)
−
∫ 1

0

Gϵ(t2, s)φ
∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)ξ

∗(ζ0, x(ζ0 − η∗))
]
dζ0

)
ds
∣∣∣ (3.9)
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≤
∫ 1

0

∣∣Gϵ(t1, s)−Gϵ(t2, s)
∣∣φ∗

q

( 1

Γ(ν∗)

∫ s

0

(s−ζ0)ν
∗−1∥Ω∥φ∗

p

(
a1∥x∥k1 +M∗

ξ∗
)
dζ0

)
ds

≤
( |tϵ1 − tϵ2|
Γ(ϵ+ 1)

+
|t21 − t22|
Γ(ϵ)

)[ 1

Γ(ν∗ + 1)

]q−1∥Ω∥q−1(a1∥x∥k1 +M∗
ξ∗).

As t1 → t2, we have that (3.9) tends to zero. Hence, the operator F∗
0 (Z(r2)\Z(r1))

is an equicontinuous and with Arzela’-Ascoli theorem, we have F∗
0 (Z(r2)\Z(r1))

is compact. This implies F∗
0 is compact in Z(r2)\Z(r1) and consequently; F∗

0 :
Z(r2)\Z(r1) → P is completely continuous.

Here, we define height for ξ∗(t, x(t)) for r > 0, and
φ∗
max(t, r) = max

t∈(0,1)
{ξ∗(t, x(t− η∗)) : tϵ−1r ≤ x ≤ r},

φ∗
min(t, r) = min

t∈(0,1)
{ξ∗(t, x(t− η∗)) : tϵ−1r ≤ x ≤ r} .

(3.10)

Theorem 3.2. Assume that (P1)− (P3) hold and there exist a, b ∈ R+ such that

(Z1) a ≤
∫ 1

0
Gϵ(1, s)φ∗

q

(
1

Γ(ν∗)

∫ s

0
(s− ζ0)

ν∗−1φ∗
min(ζ0, a)dζ0

)
ds < +∞ and∫ 1

0
Gϵ(1, s)φ∗

q

(
1

Γ(ν∗)

∫ s

0
(s− ζ0)

ν∗−1
[
Ω(ζ0)φ

∗
max(ζ0, b)

]
dζ0

)
ds ≤ b or

(Z2)
∫ 1

0
Gϵ(1, s)φ∗

q

(
1

Γ(ν∗)

∫ s

0
(s− ζ0)

ν∗−1
[
Ω(ζ0)φ

∗
max(ζ0, a)

]
dζ0

)
ds < a and

b ≤
∫ 1

0
Gϵ(1, s)φ∗

q

(
1

Γ(ν∗)

∫ s

0
(s− ζ0)

ν∗−1
[
Ω(ζ0)φ

∗
min(ζ0, b)

]
dζ0

)
ds < +∞.

Then, the fractional DE with φ∗
p-operator (1.1) has a positive solution x ∈ P and

a ≤ ∥x∥ ≤ b.

Proof. We consider (Z1).
For x ∈ ∂Z(a), then we have ∥x∥ = a and tϵ−1a ≤ x(t) ≤ a, t ∈ [0, 1]. Then by
(3.10), we have φ∗

min(t, u) ≤ ξ∗(t, u), where 0 < t < 1. Hence, we can get

∥F∗
0x(t)∥= max

t∈[0,1]

∫ 1

0

Gϵ(t, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s−ζ0)ν
∗−1

[
Ω(ζ0)ξ

∗(ζ0, x(ζ0−η∗))
]
dζ0

)
ds

≥ tϵ−1

∫ 1

0

Gϵ(1, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s−ζ0)ν
∗−1

[
Ω(ζ0)ξ

∗(ζ0, x(ζ0 − η∗))
]
dζ0

)
ds

≥
∫ 1

0

Gϵ(1, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s−ζ0)ν
∗−1

[
Ω(ζ0)φ

∗
min(ζ0, a)

]
dζ0

)
ds ≥ a=∥x∥.

(3.11)
If x(t) ∈ ∂Z(b), then ∥x∥ = b and tϵ−1b ≤ u ≤ b, for 0 ≤ t ≤ 1. By (3.10), we get
φ∗
max(t, u) ≥ ξ∗(t, u). This implies

∥F∗
0x(t)∥ = max

t∈[0,1]

∫ 1

0

Gϵ(t, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s−ζ0)ν
∗−1

[
Ω(ζ0)ξ

∗(ζ0, x(ζ0−η∗))
]
dζ0

)
ds

≤ tϵ−1

∫ 1

0

Gϵ(1, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s−ζ0)ν
∗−1

[
Ω(ζ0)ξ

∗(ζ0, x(ζ0−η∗))
]
dζ0

)
ds

≤
∫ 1

0

Gϵ(1, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s−ζ0)ν
∗−1

[
Ω(ζ0)φ

∗
max(ζ0, b)

]
dζ0

)
ds≤b=∥x∥.

(3.12)
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By Lemma 1.2, F∗
0 (x) = x ∈ Z(b)\Z(a), which means a ≤ ∥x∗∥ ≤ b, and by Lemma

2.2, Theorem 2.1, we have x∗(t) ≥ tϵ−1∥x∗∥ ≥ atϵ−1 > 0, for t ∈ (0, 1). Therefore,
x∗ is an increasing positive solution. Furthermore, we derive that
∂

∂t
x∗(t) =

∂

∂t
F∗

0x(t)

=

∫ 1

0

∂

∂t
Gϵ(t, s)φ∗

q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)ξ

∗(ζ0, x
∗(ζ0 − η∗))

]
dζ0

)
ds

> 0. (3.13)

4. Stability
In this section, we discuss the HUS of the singular fractional DE with φ∗

p-operator
(1.1) with the help of our results in [23,29] and the related references therein.

Definition 4.1. We say that (3.1) is HUS if for every λ > 0, there exists a constant
D∗ > 0 such that:
If∣∣x(t)− ∫ 1

0

Gϵ(t, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)ξ

∗(ζ0, x(ζ0 − η∗))
]
dζ0

)
ds
∣∣ ≤ λ,

(4.1)
then there exists y(t) satisfying

y(t) =

∫ 1

0

Gϵ(t, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)ξ

∗(ζ0, y(ζ0 − η∗))
]
dζ0

)
ds, (4.2)

such that

|x(t)− y(t)| ≤ D∗λ∗. (4.3)

Theorem 4.1. The problem (1.1), is HUS provided that (P1), (P2) and (P4) are
satisfied.

Proof. With the help of Definition 4.1 and Theorem 3.2, we assume that x(t)
is a positive solution of the Singular fractional DE (3.1) and y(t) is an another
approximate solution which is satisfying (4.2). Then∣∣x(t)− y(t)

∣∣ (4.4)

=
∣∣∣ ∫ 1

0

Gϵ(t, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)ξ

∗(ζ0, x(ζ0 − η∗))
]
dζ0

)
ds

−
∫ 1

0

Gϵ(t, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)ξ

∗(ζ0, y(ζ0 − η∗))
]
dζ0

)
ds
∣∣∣ (4.5)

≤(p−1)ρp−2∥Ω∥q−1
(∫ 1

0

∣∣Gϵ(t, s)
∣∣∣∣∣φ∗

q

( 1

Γ(ν∗)

∫ s

0

(s−ζ0)ν
∗−1[Ω(ζ0)ξ∗(ζ0, x(ζ0−η∗))]dζ0)ds

− φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)ξ

∗(ζ0, y(ζ0 − η∗))
]
dζ0

)
ds
∣∣∣

≤(p− 1)ρp−2λξ∗
( 1

Γ(ϵ+ 1)
+

1

Γ(ϵ)

)[ 1

Γ(ν∗ + 1)

]q−1∥Ω∥q−1
∥∥x− y

∥∥
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where D∗ = ρp−2(p−1)λξ∗
(

2
Γ(ϵ+1) +

1
Γ(ϵ)

)[
1

Γ(ν∗+1)

]q−1∥Ω∥q−1. Hence (4.4) is Hyers-
Ulam stable. Consequently, the HUS of (1.1) is proved.

5. Example
In this section, an example is presented to illustrate the results in Sections 3 and 4.

Example 5.1. For ψ1(t, x(t − η∗)) = x3(t) + 1−η∗√
x(t)

, t ∈ [0, 1], p = 3, ν∗ = ϵ =

3.5, η∗ = 2
3 , Ω = 1√

1−t
, ψ1(t, x(t)) = x3(t) + 1

3
√

x(t)
, we consider the following

singular fractional DE with φ∗
p-operator:

Dν∗[
φ∗
p[Dϵx(t)]

]
+
[
x3(t) +

1√
1− t

1− η∗√
x(t)

]
= 0,(

φ∗
p[Dϵx(t)]

)(i)|t=0 = 0,

x′(1) = 0, x(j)(0) = 0, x′(0) = x(1),

(5.1)

where i = 0, 1, 2 and j = 2, 3. Clearly Ω ∈ C((0, 1), [0,+∞)), ξ∗ ∈ C((0, 1) ×
(0,+∞), [0,+∞). We consider the following cases:

φ∗
max(t, r) = max{x3 + 1− η∗

x
1
5

: t
5
2 r ≤ x ≤ r} ≤ r3 +

1

3
t
1
3 r

1
5 ,

φ∗
min(t, r) = min{x3 + 1− η∗

x
1
5

: t
5
2 r ≤ x ≤ r} ≥ t

15
2 r3 +

1

3r
1
5

,

as height functions. Then, we have∫ 1

0

Gϵ(1, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)φ

∗
max(ζ0, b)

]
dζ0

)
ds

=

∫ 1

0

Gϵ(1, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)φ

∗
max(ζ0, 1)

]
dζ0

)
ds (5.2)

≤
∫ 1

0

Gϵ(1, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[ 1√
1− ζ0

(
1 +

1

3
√
ζ0

)]
dζ0

)
ds

= 0.0626232 < 1,

∫ 1

0

Gϵ(t, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)ψmin(ζ0, a)

]
dζ0

)
ds

=

∫ 1

0

Gϵ(1, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[
Ω(ζ0)ψmin(ζ0,

1

1000
)
]
dζ0

)
ds (5.3)

≥
∫ 1

0

Gϵ(1, s)φ∗
q

( 1

Γ(ν∗)

∫ s

0

(s− ζ0)
ν∗−1

[ 1√
1− ζ0

(
ζ

15
2

0

1

10003
+

1000
1
5

3

)]
dζ0

)
ds

= 0.0040495 >
1

1000
.

By the help of Theorem 3.2, (5.1) has a solution x∗ and satisfying 1
1000 ≤ ∥x∗∥ ≤ 1.



594 H. Khan, C. Tunc, W. Chen & A. Khan

6. Conclusion
This paper is related to the study of EUS and Hyers-Ulam stability of (1.1). In the
literature, there is no any relative paper which may cover the subject area of the
paper. Therefore, our results were based on the importance of study. For the EUS
and HUS of (1.1), we have converted the problem to fractional integral form with
the help of Green function Gϵ(t, s). For our suggested problem, it was proved that
Gϵ(t, s) is an increasing positive function in t on the interval [0, 1]. Then, by the
help of fixed point theorems, theorems for the EUS were obtained and Hyers-Ulam
stability was also examined. For the application of the results, we have suggested an
example. For our problem, the readers may work on multiplicity results considering
different fractional order derivatives.
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