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Abstract

In this note, the local spectral properties of unilateral operator weighted shifts are
studied.
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§ 1 . Introduction

Let L(H) denote the algebra of all bounded linear operators acting on a complex Hilbert
space H, and let A := (An)n≥0 be a sequence of uniformly bounded invertible operators of
L(H). Let

Ĥ :=
+∞∑
n=0

⊕Hn,

where Hn = H for each n ≥ 0. It is a Hilbert space when equipped with the inner product

〈(xn)n, (yn)n〉 bH =
+∞∑
n=0

〈xn, yn〉H, (xn)n, (yn)n ∈ Ĥ.

Therefore, the corresponding norm is given by

‖(xn)n‖ bH =
( +∞∑

n=0

‖xn‖2H
) 1

2
, (xn)n ∈ Ĥ.

The unilateral operator weighted shift, Su, with the weight sequence A = (An)n≥0 is the
operator on Ĥ defined by

Su(x0, x1, x2, · · · ) = (0, A0x0, A1x1, A2x2, · · · ), (xn)n ∈ Ĥ.

Operator weighted shifts were first introduced by A. Lambert [19], and have been
studied by many authors (see for example, [4, 12–18]). In the case when dimH = 1, they
are exactly the scalar weighted shifts which have been widely studied. An excellent survey
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of the investigation of the spectral theory of such operators was given by A. L. Shields [27].
Moreover, several known results for the scalar case have been generalized and extended to the
setting of operator weighted shifts. However, the question of determining the local spectral
properties for operator weighted shifts is natural and the investigation of these properties
for scalar weighted shifts has been studied recently in [6] and [24]. The main goal of the
present note is to study and examine whether or not the results obtained in [6, 24] remain
valid for unilateral operator weighted shifts. We give necessary conditions for a unilateral
operator weighted shift to satisfy Dunford’s condition (C) or Bishop’s property (β). Unlike
the scalar weighted shift operators, we show that there are examples of unilateral operator
weighted shifts possessing Bishop’s property (β) with large approximate point spectrum and
without fat local spectra.

For an operator T ∈ L(H), let, as usual, T ∗, σ(T ), σap(T ), σp(T ), and r(T ) denote
the adjoint, the spectrum, the approximate point spectrum, the point spectrum, and the
spectral radius of T , respectively. Let m(T ) := inf{‖Tx‖ : ‖x‖ = 1} stand for the lower
bound of T . Just as the case of the spectral radius, it is shown in [22] that the sequence(
m(Tn)

1
n

)
n≥1

converges and its limit, denoted by r1(T ), equals its supremum.
We need to review some notions and basic facts from local spectral theory; we refer

the reader to the monographs [8] and [20] for details. An operator T ∈ L(H) is said to
have the single-valued extension property provided that for every open subset U of C there
exists no nonzero analytic function φ : U → H such that (T − λ)φ(λ) = 0, λ ∈ U . A
local version of this property was first introduced by J. K. Finch [11] and has been recently
studied and investigated in the local spectral theory and Fredolhm theory by several authors
(see for instance, [1–3]). Recall that an operator T ∈ L(H) is said to have the single-valued
extension property at a point λ0 ∈ C if for every open disc U centered at λ0, the only
analytic solution of the equation (T − λ)φ(λ) = 0, λ ∈ U, is the zero function φ ≡ 0. The
set of all λ ∈ C on which T fails to have the single-valued extension property, denoted by
<(T ), is clearly an open subset of C contained in the interior of σp(T ). It is empty precisely
when T has the single-valued extension property.

Let T ∈ L(H) be a given operator. The local resolvent set, ρT (x), of T at point x ∈ H
is defined to be the union of all open subsets U of C for which there is an analytic function
φ : U → H which satisfies (T − λ)φ(λ) = x, λ ∈ U. It is evidently an open subset of
C which contains ρ(T ); therefore, the local spectrum, σ

T
(x) := C\ρ

T
(x), of T at x is a

closed subset of σ(T ). If σT (x) = σ(T ) for all nonzero x ∈ H, the operator T is said to
have fat local spectra. For a closed subset F of C, let H

T
(F ) := {x ∈ H : σ

T
(x) ⊂ F}

stand for the corresponding local spectral subspace. It is a T -hyperinvariant subspace, but
generally not closed. If the local spectral subspaces, H

T
(·), are closed, the operator T

is said to satisfy Dunford’s condition (C). It is well known that Dunford’s condition (C)
implies the single-valued extension property and it is clear that Dunford’s condition (C)
follows from fat local spectra. The local spectral radius of T at a point x ∈ H is defined
by r

T
(x) := lim sup

n→+∞
‖Tnx‖ 1

n . It should be noted that if T has the single-valued extension

property, then for any x ∈ H there exists a unique H-valued analytic function, x̃(·), defined
on ρ

T
(x) such that

(T − λ)x̃(λ) = x, λ ∈ ρ
T
(x).

This function is called the local resolvent function of T at x, and satisfies

x̃(λ) = −
∑

n≥0

Tnx

λn+1
for all λ ∈ C, |λ| > r

T
(x).

Therefore, if T has the single-valued extension property, then

r
T
(x) = max{|λ| : λ ∈ σ

T
(x)} for all x ∈ H.
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For information on local spectral radii of Banach space operators, we refer the reader
to [10, 31].

Throughout this note, let Su be a unilateral operator weighted shift with weight se-
quence A := (An)n≥0, and let (Bn)n≥0 be the sequence given by

Bn =

{
An−1An−2 · · ·A1A0, if n > 0,

1, if n = 0.

Define

r2(Su) :=
1

lim sup
n→+∞

‖Bn
−1‖ 1

n

, r3(Su) :=
1

lim inf
n→+∞

‖Bn
−1‖ 1

n

,

R+
2 (Su) := sup

x∈H, x 6=0

{ 1
lim sup
n→+∞

‖B∗
n
−1x‖ 1

n

}
= sup

x∈H, ‖x‖=1

{ 1
lim sup
n→+∞

‖B∗
n
−1x‖ 1

n

}
,

R−2 (Su) := inf
x∈H, x 6=0

{ 1
lim sup
n→+∞

‖B∗
n
−1x‖ 1

n

}
= inf

x∈H, ‖x‖=1

{ 1
lim sup
n→+∞

‖B∗
n
−1x‖ 1

n

}
,

R+
3 (Su) := sup

x∈H, x 6=0

{
lim sup
n→+∞

‖Bnx‖ 1
n

}
= sup

x∈H, ‖x‖=1

{
lim sup
n→+∞

‖Bnx‖ 1
n

}
,

R−3 (Su) := inf
x∈H, x 6=0

{
lim sup
n→+∞

‖Bnx‖ 1
n

}
= inf

x∈H, ‖x‖=1

{
lim sup
n→+∞

‖Bnx‖ 1
n

}
.

Note that

r1(Su) ≤ r2(Su) ≤ R−2 (Su) ≤ R+
2 (Su) and r3(Su) ≤ R−3 (Su) ≤ R+

3 (Su) ≤ r(Su).

Note also that if Su is a scalar weighted shift, then

r1(Su) ≤ r2(Su) = R−2 (Su) = R+
2 (Su) ≤ r3(Su) = R−3 (Su) = R+

3 (Su) ≤ r(Su).

Finally, we would like to record and without further mention some notations that we
will use repeatedly throughout this note. Wherever it is more convenient, we will write
y =

∑
n≥0

⊕yn instead of y = (yn)n ∈ Ĥ. Moreover, for every x ∈ H, we write

x(n) = (0, · · · , 0, x, 0, · · · ), n ≥ 0

for the element of Ĥ for which all the coordinates are zero except the nth coordinate which
equals x. Note that

rSu(x(k)) = lim sup
n→+∞

‖Bn+kB−1
k x‖ 1

n for all x ∈ H and all k ≥ 0. (1.1)

§ 2 . Preliminaries and Elementary Background

In this section, we assemble some known results whose proofs are straightforward and
are therefore omitted. Variants of Proposition 2.1 can be found in [20] and Corollary 2.1(b),
Proposition 2.2, and Proposition 2.3 have been appeared in [19].
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Proposition 2.1. Assume that T ∈ L(H) is an operator for which
⋂

n≥0

TnH = {0}.
The following statements hold:

(a) {λ ∈ C : |λ| ≤ r1(T )} ⊂ σ
T
(x) for every nonzero element x ∈ H.

(b) σp(T ) ⊂ {0}.
(c) Each σT (x) is connected.
(d) σ(T ) is a connected set and satisfies {λ ∈ C : |λ| ≤ r1(T )} ⊂ σ(T ). In particular,

if σ(T ) is circularly symmetric about the origin, then σ(T ) = {λ ∈ C : |λ| ≤ r(T )}.
Evidently, the unilateral operator weighted shift Su satisfies the condition that

⋂

n≥0

Sn
u Ĥ = {0},

and its spectrum is rotationally symmetric. Therefore, the next result is an immediate
consequence of Proposition 2.1.

Corollary 2.1. The following statements hold:
(a) For every nonzero element x ∈ Ĥ, the local spectrum, σ

Su
(x), of Su at x is connected

and satisfies {λ ∈ C : |λ| ≤ r1(Su)} ⊂ σSu
(x).

(b) The spectrum of Su is the disc {λ ∈ C : |λ| ≤ r(Su)}.
Proposition 2.2. For every n ≥ 1, we have

‖Sn
u‖ = sup

k≥0
‖Bn+kB−1

k ‖, m(Sn
u ) = inf

k≥0

{ 1
‖BkB−1

n+k‖
}

.

Thus

r(Su) = lim
n→+∞

[
sup
k≥0

‖Bn+kB−1
k ‖

] 1
n

, r1(Su) = lim
n→+∞

[
inf
k≥0

{ 1
‖BkB−1

n+k‖
}] 1

n

.

Proposition 2.3. The adjoint of Su is given by

S∗ux = (A∗0x1, A
∗
1x2, A

∗
2x3, · · · ), x = (x0, x1, · · · ) ∈ Ĥ.

§ 3 . Local Spectra of Su

We begin this section with the following result that gives a necessary and sufficient
condition for S∗u to enjoy the single-valued extension property.

Lemma 3.1. The following statements hold:
(a) σp(Su) = ∅. In particular, Su has always the single-valued extension property.
(b) {0} ∪ {λ ∈ C : |λ| < R+

2 (Su)} ⊂ σp(S∗u) ⊂ {λ ∈ C : |λ| ≤ R+
2 (Su)}.

(c) <(S∗u) = {λ ∈ C : |λ| < R+
2 (Su)}. In particular, S∗u has the single-valued extension

property if and only if R+
2 (Su) = 0.

Proof. (a) By Proposition 2.1(b), we have σp(Su) ⊂ {0}. As Su is injective, we note
that σp(Su) = ∅.

(b) Suppose that λ ∈ C is an eigenvalue for S∗u and that (xn)n is a corresponding
eigenvector. We have

(A∗0x1, A
∗
1x2, A

∗
2x3, · · · ) = (λx0, λx1, λx2, · · · ).
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This shows that
xn = λnB∗

n
−1x0, n ≥ 0.

Therefore
‖x‖2 =

∑

n≥0

|λ|2n‖B∗
n
−1x0‖2.

By the Cauchy-Hadamard formula for the radius of convergence, we get that

|λ| ≤ 1
lim sup
n→+∞

‖B∗
n
−1x0‖ 1

n

.

Thus
σp(S∗u) ⊂ {λ ∈ C : |λ| ≤ R+

2 (Su)}.
Now, let us prove that

{0} ∪ {λ ∈ C : |λ| < R+
2 (Su)} ⊂ σp(S∗u).

It is clear that for every x ∈ H, we have S∗ux(0) = 0; hence, 0 ∈ σp(S∗u). If R+
2 (Su) = 0,

then there is nothing to prove; thus, we may assume that R+
2 (Su) > 0. Let λ ∈ C such that

|λ| < R+
2 (Su). So, there is a nonzero x0 ∈ H such that |λ| < 1

lim sup
n→+∞

‖B∗n−1x0‖
1
n

. We have

(S∗u − λ)kx0(λ) = 0, where kx0(λ) =
∑
n≥0

⊕λnB∗
n
−1x0. This shows that

{λ ∈ C : |λ| < R+
2 (Su)} ⊂ σp(S∗u),

and the desired statement holds.
(c) In view of the statement (b) and the fact that <(S∗u) ⊂ int(σp(S∗u)), we have

<(S∗u) ⊂ {λ ∈ C : |λ| < R+
2 (Su)}.

Conversely, let x be a nonzero element of H and set

Ux :=
{

λ ∈ C : |λ| < 1
lim sup
n→+∞

‖B∗
n
−1x‖ 1

n

}
, kx(λ) :=

∑

n≥0

⊕λnB∗
n
−1x, λ ∈ Ux.

Since (S∗u−λ)kx(λ) = 0 for all λ ∈ Ux, and x is an arbitrary nonzero element of H, we have

{λ ∈ C : |λ| < R+
2 (Su)} =

⋃

x∈H, x 6=0

Ux ⊂ <(S∗u).

The proof is therefore complete.

The following result refines the local spectral inclusion given in Corollary 2.1.

Proposition 3.1. For every nonzero y = (y0, y1, y2, · · · ) ∈ Ĥ, we have

{λ ∈ C : |λ| ≤ R−2 (Su)} ⊂ σ
Su

(y).

In particular, if r(Su) = R−2 (Su), then Su has fat local spectra.

Proof. As
⋂

n≥0

Sn
u Ĥ = {0}, we have 0 ∈ σ

Su
(y). Thus, we may assume that R−2 (Su) >

0. Let O := {λ ∈ C : |λ| < R−2 (Su)}, and let x be a nonzero element of H. Consider the
following analytic Ĥ-valued function defined on O by

kx(λ) :=
∑

n≥0

⊕λnB∗
n
−1x.
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We have (Su − λ)∗kx(λ) = 0 for every λ ∈ O. Now, let y = (y0, y1, y2, · · · ) ∈ Ĥ such that
O ∩ ρ

Su
(y) 6= ∅. So, for every λ ∈ O ∩ ρ

Su
(y), we have

∑

n≥0

〈yn, B∗
n
−1x〉Hλn = 〈y, kx(λ)〉 bH = 〈(Su − λ)ỹ(λ), kx(λ)〉 bH

= 〈ỹ(λ), (Su − λ)∗kx(λ)〉 bH = 0.

Hence, for every n ≥ 0, we have

〈yn, B∗
n
−1x〉H = 0.

Since x is an arbitrary element of H, we have y = 0; and the proof is therefore complete.

In view of Proposition 3.1, we note that R−2 (Su) ≤ rSu(x) for all nonzero x =
(x0, x1, x2, · · · ) ∈ Ĥ. The following gives more information about local spectral radii of
Su.

Proposition 3.2. For every nonzero element x = (x0, x1, · · · ) ∈ Ĥ, we have

R−3 (Su) ≤ rSu
(x) ≤ r(Su).

Moreover, if x = (x0, x1, · · · ) is a nonzero finitely supported element of Ĥ, then

R−3 (Su) ≤ rSu(x) = max
k≥0

(rSu(x(k)
k )) ≤ R+

3 (Su). (3.1)

Proof. Let x = (x0, x1, · · · ) be a nonzero element of Ĥ; so, there is an integer k0 ≥ 0
such that xk0 6= 0. Since

‖Sn
ux‖2 =

+∞∑

k=0

‖Bn+kB−1
k xk‖2, ∀n ≥ 0,

we have
‖Bn+k0B

−1
k0

xk0‖
1

n+k0 ≤ ‖Sn
ux‖ 1

n+k0 , ∀n ≥ 0.

Now, taking lim sup as n → +∞, we get

R−3 (Su) ≤ lim sup
n→+∞

‖Bn+k0B
−1
k0

xk0‖
1

n+k0 ≤ rSu(x),

as desired.
Now, assume that x = (x0, x1, · · · ) is a nonzero finitely supported element of Ĥ. As

above, we have
‖Bn+kB−1

k xk‖ 1
n ≤ ‖Sn

ux‖ 1
n , ∀n, k ≥ 0.

By taking lim sup as n → +∞, we get rSu(x(k)
k ) ≤ rSu(x), ∀ k ≥ 0. Hence

max
k≥0

(rSu(x(k)
k )) ≤ rSu(x).

As σSu
(x) ⊂ ⋃

k≥0

σSu
(x(k)

k ), and rSu(y) = max{|λ| : λ ∈ σSu
(y)} for every nonzero y ∈ Ĥ,

we obtain rSu(x) ≤ max
k≥0

(rSu(x(k)
k )). Hence rSu(x) = max

k≥0
(rSu(x(k)

k )). On the other hand, we

have rSu(x(k)
k ) = rSu((B−1

k xk)(0)), ∀ k ≥ 0. This shows that

rSu(x) = max
k≥0

(rSu(x(k)
k )) ≤ R+

3 (Su).
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Therefore, the desired result holds.

For every x = (x0, x1, · · · ) ∈ Ĥ, we set

RA(x) :=
1

lim sup
n→+∞

‖B−1
n xn‖ 1

n

.

Obviously, if x is a nonzero element of Ĥ, then r2(Su) ≤ RA(x) ≤ +∞.

Theorem 3.1. For every nonzero element x = (x0, x1, · · · ) ∈ Ĥ, we have

{λ ∈ C : |λ| ≤ min(RA(x), r3(Su))} ⊂ σ
Su

(x).

Moreover, if x = (x0, x1, · · · ) is a nonzero finitely supported element of Ĥ, then

{λ ∈ C : |λ| ≤ R−3 (Su)} ⊂ σ
Su

(x).

Proof. Let x = (x0, x1, · · · ) be a nonzero element of Ĥ. If min(RA(x), r3(Su)) = 0,
then there is nothing to prove since 0 ∈ σSu

(x). Thus we may suppose that min(RA(x),
r3(Su)) > 0. Now, for each n ≥ 0, let

Fn(λ) = −Bnx0

λn+1
− BnB−1

1 x1

λn
− BnB−1

2 x2

λn−1
− · · · − xn

λ
, λ ∈ C\{0},

Gn(λ) = x0 + λB−1
1 x1 + λ2B−1

2 x2 + · · ·+ λnB−1
n xn, λ ∈ C.

We have
Fn(λ) =

−1
λn+1

BnGn(λ), λ ∈ C\{0}. (3.2)

By writing x̃(λ) := (f0(λ), f1(λ), f2(λ), · · · ), λ ∈ ρSu
(x), we get from the equation

(Su − λ)x̃(λ) = x, λ ∈ ρSu
(x)

that {
−λf0(λ) = x0,

Anfn(λ)− λfn+1(λ) = xn+1 for every n ≥ 0

for all λ ∈ ρSu
(x). Therefore, for every n ≥ 0 and for every λ ∈ ρSu

(x), we have

fn(λ) = −Bnx0

λn+1
− BnB−1

1 x1

λn
− BnB−1

2 x2

λn−1
− · · · − xn

λ
= Fn(λ).

Since ‖x̃(λ)‖2 =
∑
n≥0

‖fn(λ)‖2 < +∞ for every λ ∈ ρ
Su

(x), it then follows that

lim
n→+∞

Fn(λ) = lim
n→+∞

fn(λ) = 0 for every λ ∈ ρ
Su

(x). (3.3)

We shall show that (3.3) is not satisfied for most of the points in the open disc V (x) := {λ ∈
C : |λ| < min(RA(x), r3(Su))}. It is clear that the sequence (Gn)n≥0 converges uniformly
on compact subsets of V (x) to the nonzero power series G(λ) =

∑
n≥0

λnB−1
n xn. Now, let

λ0 ∈ V (x)\{0} such that G(λ0) 6= 0; there is ε > 0 and an integer n0 such that ε < ‖Gn(λ0)‖
for every n ≥ n0. On the other hand, |λ0| < r3(Su), then there is a subsequence (nk)k≥0
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of integers greater than n0 such that |λ0|nk‖B−1
nk
‖ < 1. Thus, it follows from (3.2) that for

every k ≥ 0, we have

‖Fnk
(λ0)‖ =

∣∣∣ −1
λnk+1

0

∣∣∣‖Bnk
Gnk

(λ0)‖ ≥ 1
|λnk+1

0 |‖B−1
nk ‖

‖Gnk
(λ0)‖ ≥ ε

|λ0| .

And so, by (3.3), λ0 6∈ ρ
Su

(x). Since the set of zeros of G is at most countable, we have
{λ ∈ C : |λ| ≤ min(RA(x), r3(Su))} ⊂ σ

Su
(x).

Now, assume that x = (x0, x1, · · · ) is a nonzero finitely supported element of Ĥ, and
k0 is the largest integer n ≥ 0 for which xn 6= 0. Conserve the same notations as above and
note that, for every n ≥ k0, we have

Fn(λ) =
−1

λn+1
BnG(λ), λ ∈ C\{0},

where
G(λ) := x0 + λB−1

1 x1 + λ2B−1
2 x2 + · · ·+ λk0B−1

k0
xk0 , λ ∈ C.

Let W (x) := {λ ∈ C : |λ| < R−3 (Su)}, and let λ0 ∈ W (x)\{0} such that G(λ0) 6= 0.
As |λ0| < R−3 (Su) ≤ lim sup

n→+∞
‖BnG(λ0)‖ 1

n , we note that the series
∑
n≥0

‖Fn(λ0)‖2 diverges.

Hence, λ0 ∈ σ
Su

(x), and therefore {λ ∈ C : |λ| ≤ R−3 (Su)} ⊂ σ
Su

(x).

For every x ∈ H, we write

Ĥ(x) :=
∨
{(Bnx)(n) : n ≥ 0},

where “
∨

” denotes the closed linear span. It is shown in Proposition 4.3.5 of [30] that for
every nonzero x ∈ H, we have

σ
Su

(x(n)) = {λ ∈ C : |λ| ≤ rSu(x(n))}, n ≥ 0.

We refine this result as follows; our proof is inspired by an argument of [6].

Proposition 3.3. Let x be a nonzero element of H, and let y ∈ Ĥ(x). The following
statements hold:

(a) If RA(y) > rSu(x(0)), then σSu
(y) = {λ ∈ C : |λ| ≤ rSu(x(0))}.

(b) If RA(y) ≤ rSu(x(0)), then {λ ∈ C : |λ| ≤ RA(y)} ⊂ σ
Su

(y).

Proof. Let x be a nonzero element of H, and let us first show that

σSu
(x(0)) = {λ ∈ C : |λ| ≤ rSu(x(0))}.

To do this it suffices to prove that {λ ∈ C : |λ| ≤ rSu(x(0))} ⊂ σ
Su

(x(0)). Since 0 ∈ σSu(x),
we may and shall assume that rSu(x(0)) > 0. As in the proof of Theorem 3.1, we trivially
have

x̃(0)(λ) =
(
− x

λ
,−B1x

λ2
,−B2x

λ3
, · · ·

)
, λ ∈ ρSu

(x(0)).

In particular, we have ‖x̃(0)(λ)‖2bH =
+∞∑

k=0

‖Bkx‖2H
|λ|2(k+1)

, λ ∈ ρSu
(x(0)). This implies that ρSu

(x(0))

⊂ {λ ∈ C : rSu(x(0)) ≤ |λ|}. Or, equivalently

{λ ∈ C : |λ| < rSu(x(0))} ⊂ σ
Su

(x(0)).
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As σ
Su

(x(0)) is a closed set and rSu(x(0)) > 0, the desired identity holds.

(a) Assume that y =
+∞∑
n=0

an

(
Bnx

)(n) is a nonzero element of Ĥ(x) for which RA(y) >

rSu
(x(0)). In this case the function f(λ) :=

∑
n≥0

anλn is analytic on the open disc {λ ∈
C : |λ| < RA(y)} which is a neighborhood of σSu

(x(0)). Let r be a real number such that
rSu(x(0)) < r < RA(y), we have

f(Su, x(0)) :=
−1
2πi

∮

|λ|=r

f(λ)x̃(0)(λ)dλ =
−1
2πi

∮

|λ|=r

f(λ)
(
−

∑

n≥0

Sn
ux(0)

λn+1

)
dλ = y.

And so, by Theorem 2.12 of [29], we have

σSu
(y) = σSu

(f(Su, x(0))) = σSu
(x(0)) = {λ ∈ C : |λ| ≤ rSu(x(0))}.

(b) The proof of the second statement is similar to the one of Theorem 3.1 if, for every
integer n ≥ 0, we take

Fn(λ) := −( an

λn+1
+

a1

λn
+

a2

λn−1
+ · · ·+ an

λ

)
Bnx, λ ∈ C\{0},

Gn(λ) := a0 + a1λ + a2λ
2 + · · ·+ anλn, λ ∈ C.

§ 4 . Dunford’s Condition (C) and Bishop’s Property (β) for Su

Before outlining the statement of the main results of this section, let us recall a few
more notions and properties from the local spectral theory which will be needed in the
sequel. An operator T ∈ L(H) is said to be hyponormal if ‖T ∗x‖ ≤ ‖Tx‖ for all x ∈ H. It is
said be subnormal if it has a normal extension which means that there is a normal operator
N on a Hilbert space K, containing H, such that H is a closed invariant subspace of N and
the restriction N|H coincides with T . Note that every subnormal operator is hyponormal,
but the converse is false (see [9]). For an open subset U of C, let O(U,H) denote, as usual,
the Fréchet space of all analytic H-valued functions on U . An operator T ∈ L(H) is said to
possess Bishop’s property (β) if the continuous mapping

TU : O(U,H) −→ O(U,H)
f 7−→ (T − z)f

is injective with closed range for each open subset U of C. It is known that hyponormal
operators possess Bishop’s property (β) and it turns out that Dunford’s condition (C) follows
from Bishop’s property (β) (see [20, 25]). Let λ0 ∈ C; recall that an operator T ∈ L(H) is
said to possess Bishop’s property (β) at λ0 if there is an open neighbourhood V of λ0 such
that for every open subset U of V , the mapping T

U
is injective and has a closed range. Note

that if T possesses Bishop’s property (β) at any point λ ∈ C, then T possesses Bishop’s
classical property (β). Finally, for any operator T ∈ L(H), we shall denote

σβ(T ) :=
{
λ ∈ C : T fails to possess Bishop’s property (β) at λ

}
.

It is a closed subset of σap(T ) (see for instance [6, Proposition 2.1]).
The following result gives necessary conditions for the operator weighted shift, Su, to

enjoy Dunford’s condition (C).
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Theorem 4.1. If Su satisfies Dunford’s condition (C), then r(Su) = R+
3 (Su). More-

over, for every nonzero x ∈ H, we have

lim sup
n→+∞

‖Bnx‖ 1
n = lim

n→+∞

[
sup
k≥0

‖Bn+kx‖
‖Bkx‖

] 1
n

. (4.1)

Proof. To prove R+
3 (Su) = r(Su), it suffices to show that r(Su) ≤ R+

3 (Su). Since each
Bk is an invertible operator, we note that

R+
3 (Su) = sup

x∈H, x 6=0
(rSu(x(k))), ∀ k ≥ 0.

Now, assume that Su satisfies Dunford’s condition (C), and let

F := {λ ∈ C : |λ| ≤ R+
3 (Su)}.

It follows from (3.1) that Ĥ
Su

(F ) contains a dense subspace of Ĥ. As the subspace Ĥ
Su

(F )
is closed, we have Ĥ

Su
(F ) = Ĥ; therefore, σ

Su
(y) ⊂ F for every y ∈ Ĥ. And so, σ(Su) =⋃

y∈ bHσ
Su

(y) ⊂ F (see [20, Proposition 1.3.2]). Hence, r(Su) ≤ R+
3 (Su), as desired.

Let x be a nonzero element of H and let us now establish the identity (4.1). Since Su

satisfies Dunford’s condition (C), we note that Su restricted to Ĥ(x) also satisfies Dunford’s
condition (C) (see [20, Proposition 1.2.21]). Now, note that (vn)n≥0 is an orthonormal basis
of Ĥ(x), where

vn :=
(Bnx)(n)

‖Bnx‖ , n ≥ 0.

We have

Suvn =
‖Bn+1x‖
‖Bnx‖ vn+1, n ≥ 0.

This shows that Su| bH(x) is an injective scalar unilateral weighted shift with weight sequence
(‖Bn+1x‖
‖Bnx‖

)
n≥0

. Therefore, the identity (4.1), follows from Theorem 3.8 of [6].

Unlike the scalar weighted shift operators, generally we do not have r1(Su) = r(Su)
if the unilateral operator weighted shift Su possesses Bishop’s property (β) (see Example
4.2). But, of course, if r1(Su) = r(Su), then either Su possesses Bishop’s property (β),
or σβ(Su) = {λ ∈ C : |λ| = r(Su)}. In [30], H. Zguitti represented, just as in [16], a
unilateral operator weighted shift as operator multiplication by z on a Hilbert space of
formal power series whose coefficients are in H. He therefore adapted T. L. Miller and V.
G. Miller’s arguments given in [23] to show that if Su possesses Bishop’s property (β), then

r2(Su) = R1(Su), where R1(Su) = lim inf
n→+∞

[
inf
k≥0

‖Bn+kB−1
k ‖

] 1
n

. Here, we refine this result as

follows and provide a direct proof.

Theorem 4.2. If Su possesses Bishop’s property (β), then r2(Su) = r1(Su), and
r(Su) = R+

3 (Su). Moreover, for every nonzero x ∈ H, we have

lim
n→+∞

[
inf
k≥0

‖Bn+kx‖
‖Bkx‖

] 1
n

= lim
n→+∞

[
sup
k≥0

‖Bn+kx‖
‖Bkx‖

] 1
n

. (4.2)

Proof. Suppose that Su possesses Bishop’s property (β) and note that, since Su

satisfies Dunford’s condition (C), r(Su) = R+
3 (Su) (see Theorem 4.1). If r2(Su) = 0, then,
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since r1(Su) ≤ r2(Su), there is nothing to prove. Thus, we may assume that 0 < r2(Su).
Now, recall that it is shown in [22] that

r1(T ) = min{|λ| : λ ∈ σap(T )}
for any operator T ∈ L(H). And so, in order to show that r2(Su) = r1(Su), it suffices to
prove that U ∩ σap(Su) = ∅, where U := {λ ∈ C : |λ| < r2(Su)}. Assume for the sake of
contradiction that there is λ0 ∈ U∩σap(Su). Since σp(Su) = ∅, there is y = (y0, y1, y2, · · · ) ∈
cl(ran(Su − λ0))\ran(Su − λ0). For every x ∈ H, set kx(λ) :=

∑
i≥0

⊕λ
i
B∗

i
−1x, λ ∈ U , and

note that
(Su − λ)∗kx(λ) = 0, ∀λ ∈ U .

In particular, we have

〈y, kx(λ0)〉 bH = 0 for all x ∈ H. (4.3)

And so, for every x ∈ H, we have
〈 ∑

i≥0

λi
0Bi

−1yi, x
〉
H

=
∑

i≥0

〈yi, λ
i

0B
∗
i
−1x〉H = 〈y, kx(λ0)〉 bH = 0.

This implies that ∑

i≥0

λi
0Bi

−1yi = 0. (4.4)

Now, for every integer n ≥ 0, we define on U the following analytic Ĥ-valued functions by

f(λ) := y −
(∑

i≥0

λiBi
−1yi

)(0)

and fn(λ) := yn −
( n∑

i=0

λiBi
−1yi

)(0)

,

where yn := (y0, · · · , yn, 0, 0, · · · ). Noting that for every integer n ≥ 0, we have

fn(λ) =
n∑

i=0

(Si
u − λi)(B−1

i yi)(0), λ ∈ U .

This implies that each fn is in ran((Su)U ). But f 6∈ ran((Su)U ) since, in view of (4.4), we
have f(λ0) = y 6∈ ran(Su − λ0). On the other hand, for every compact subset K of U , we
have

sup
λ∈K

‖fn(λ)− f(λ)‖ bH ≤ ‖y − yn‖ bH + sup
λ∈K

∥∥∥
(∑

i>n

λiBi
−1yi

)(0)∥∥∥ bH
= ‖y − yn‖ bH + sup

λ∈K

∥∥∥
∑

i>n

λiBi
−1yi

∥∥∥
H

≤ ‖y − yn‖ bH + sup
λ∈K

{ ∑

i>n

|λ|i‖Bi
−1‖‖yi‖H

}

≤
(
1 + sup

λ∈K

( ∑

i≥0

|λ|2i‖Bi
−1‖2

) 1
2
)
‖y − yn‖ bH.

Therefore, fn → f in O(U , Ĥ). As each fn ∈ ran((Su)U ) and f 6∈ ran((Su)U ), we note that
ran((Su)U ) is not closed. We have a contradiction to the fact that Su possesses Bishop’s
property (β). And so, U ∩ σap(Su) = ∅, as desired.
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Now, let x be a nonzero element of H. Since Su possesses Bishop’s property (β), the
injective scalar unilateral weighted shift Su| bH(x) possesses also Bishop’s property (β). Thus,
applying Theorem 3.9 of [6] gives the identity (4.2).

Remark 4.1. Let T ∈ L(H) be an invertible operator, and assume that An = T for
all n ≥ 0. The corresponding unilateral operator weighted shift, Su, satisfies the following
identities

r(Su) = R+
3 (Su) = r(T ),

r1(Su) = r2(Su) = R−2 (Su) = r1(T ) =
1

r(T−1)
.

Indeed, we clearly have r(Su) = r(T ) and r1(Su) = r2(Su) = r1(T ) = 1
r(T−1) . Since,

R+
3 (Su) = sup

{
rT (x) : x ∈ H, x 6= 0

}
, it follows from Proposition 3.3.14 of [20] that

R+
3 (Su) = r(T ); therefore, the first identity holds. On the other hand, we have

R−2 (Su) = inf
{ 1

rT∗−1(x)
: x ∈ H, x 6= 0

}
=

1
sup {rT∗−1(x) : x ∈ H, x 6= 0} .

Again, by Proposition 3.3.14 of [20], we have R−2 (Su) = 1
r(T−1) ; and the second identity

follows.
Assume that T ∈ L(H) is an invertible operator and that An = T for all n ≥ 0. So, one

may think that the corresponding unilateral operator weighted shift, Su, satisfies Dunford’s
condition (C). It turns out that this is not true in general as the next example shows.

Example 4.1. Let (en)n∈Z be an orthonormal basis ofH, and let (ωn)n∈Z be a positive
two-sided sequence for which

(a) 0 < inf
n∈Z

ωn ≤ sup
n∈Z

ωn < +∞.

(b) lim sup
n→+∞

[ω0ω1 · · ·ωn−1]
1
n < lim

n→+∞

[
sup
k≥0

(ωkωk+1 · · ·ωn+k−1)
] 1

n

.

Let T be the scalar invertible bilateral weighted shift on H, defined by

Ten = ωnen+1, n ∈ Z.

If An = T for all n ≥ 0, then, in view of (b), neither the identity (4.1) nor the identity (4.2)
is satisfied for e0. Hence, Su is without Dunford’s condition (C).

For the construction of a specific example of a positive two-sided sequence satisfying
the above conditions, we refer the reader to [26].

It is shown in Theorem 2.5 of [28] that a nonnormal hyponormal scalar (unilateral or
bilateral) weighted shift has fat local spectra (see also [7, Theorem 3.7]). The next example
shows that this result is not valid for hyponormal operator weighted shifts.

Example 4.2. Assume that (en)n≥0 is an orthonormal basis of H, and let (αn)n≥0

be an increasing positive sequence such that lim
n→+∞

αn = 1. The diagonal operator, T ,

with the diagonal sequence (αn)n≥0 (i.e., Ten = αnen, ∀n ≥ 0) is invertible and satisfies
r1(T ) = α0 < r(T ) = 1. If An = T for all n ≥ 0, then the unilateral operator weighted shift
Su is subnormal. Indeed, let Hn = H for all n ∈ Z and let

H̃ =
∑

n∈Z
⊕Hn

be the Hilbert space of the two-sided sequences (xn)n∈Z such that

‖(xn)n∈Z‖ eH :=
( ∑

n∈Z
‖xn‖2H

) 1
2

< +∞.
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Let Sb be the bilateral operator weighted shift defined on H̃ by

Sb(· · · , x−2, x−1, [x0], x1, x2, · · · ) = (· · · , Tx−2, [Tx−1], Tx0, Tx1, · · · ),

where for an element x = (· · · , x−2, x−1, [x0], x1, x2, · · · ) ∈ H̃, [x0] denotes the central (0th)
term of x. Note that, since T is an hermitian operator, Sb is a normal extension of Su. This
shows that Su is a subnormal operator. Now, we note that for every k ≥ 0, we have

rSu
(e(0)

k ) = lim sup
n→+∞

‖Tnek‖ 1
n = αk < r(Su) = 1.

This shows, on the one hand, that Su is without fat local spectra and, on the other hand,
that

r1(Su) = r2(Su) = R∓2 (Su) = r3(Su) = R−3 (Su) = α0 < R+
3 (Su) = r(Su) = 1.

Therefore, in view of the fact that σ(Su) = σap(Su)∪σp(S∗u), Corollary 2.1 and Lemma 3.1,
we have

σap(Su) = {λ ∈ C : α0 ≤ |λ| ≤ 1}.
Remark 4.2. Let T ∈ L(H) be an invertible operator. If An = T for all n ≥ 0, then

Su is hyponormal if and only if T is hyponormal. Therefore, to construct an example of the
kind given in Example 4.2, it suffices to take T a hyponormal operator for which there is a
nonzero element x ∈ H with rT (x) < r(T ).

Finally, we would like to point out that
(a) Proposition 3.10 of [6] remain valid for the general setting of operator weighted

shift. This is not the case for Proposition 3.12 of [6] as it is shown in Example 4.1.
(b) One can show that, for every nonzero x ∈ H, the identity

σSu(y) = σSu| bH(x)(y)

holds for all y ∈ Ĥ(x).
(c) After the present note was completed, we began to study the local spectra of

bilateral operator weighted shifts; this case is quite difficult. However, the question of which
bilateral operator weighted shift has the single-valued extension property, even when H is
an infinite dimensional Hilbert space, was recently settled in [5].

Acknowledgements. After this work was completed, the author learned that Lemma
3.1 was previously known (see Theorem 1.1 and Theorem 2.1 of [21]). The author expresses
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