English
新闻公告
More
化学进展 2011, Vol. 23 Issue (9): 1985-1992 前一篇   

所属专题: 锂离子电池

• 综述与评论 •

钒系磷酸盐锂离子电池正极材料

任慢慢*, 刘素文, 卢启芳   

  1. 山东轻工业学院 山东省玻璃与功能陶瓷加工与测试技术重点实验室 济南 250353
  • 收稿日期:2010-12-01 修回日期:2011-04-01 出版日期:2011-09-24 发布日期:2011-09-02
  • 通讯作者: 任慢慢 E-mail:rmmtzhx@163.com
  • 基金资助:

    国家自然科学基金项目(No. 50872076),山东省高等学校科技计划项目(J09LD23)和山东大学晶体材料研究所国家重点实验室开放课题项目(KF0905)资助

Vanadium-Based Phosphates as Cathode Materials for Lithium Ion Batteries

Ren Manman*, Liu Suwen, Lu Qifang   

  1. Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramic of Shandong Province, Shandong Polytechnic University, Jinan 250353, China
  • Received:2010-12-01 Revised:2011-04-01 Online:2011-09-24 Published:2011-09-02

商业化锂离子电池以锂过渡金属氧化物作正极材料,由于安全性等问题限制了其更广泛的应用。在已经研究和开发的众多新型锂离子电池正极材料中,钒系磷酸盐由于具有较高的对锂电位和理论比容量而成为研究热点。本文综述了各种钒系磷酸盐类锂离子电池正极材料的研究现状,重点对各种材料的结构、制备方法和电化学性能进行了总结,并对改善材料综合性能的方法和机理进行了探讨。

Nowadays Li ion batteries have been widely used in many fields as power suppliers for mobile equipment. In commercialized Li ion batteries, cathode materials are mainly lithium transition-metal oxides. However, high cost and security problem limit their large-scale use. Phosphate materials, with a rigid phosphate network and remarkable electrochemical and thermal stability, are considered as a substitution for lithium transition-metal oxides. Among the newly-exploited phosphate cathode materials, vanadium-based phosphates, with stable structure and high theoretical specific capacity, have been attracting much research interest. In this review, recent progress is summarized on the vanadium-based phosphate cathode materials for lithium ion batteries, particularly focusing on the structure, preparation methods, and electrochemical performances of this series of materials. Also, the strategies and the corresponding mechanisms are discussed for the improvement of their general performances.

Contents
1 Introduction
2 Structure characterization and electrochemical perf-ormances of vanadium-based phosphates
2.1 Li3V2(PO4)3
2.2 LiVPO4F
2.3 (Li)VOPO4
2.4 LiVP2O7
3 Preparation methods of vanadium-based phosphates
3.1 High temperature solid state reaction
3.2 Carbothermal reduction
3.3 Sol-gel method
3.4 Microwave solid-state reaction
3.5 Hydrothermal process
3.6 Other methods
4 Strategies for the improvement of general performances
4.1 Coating or doping with high-conductivity materials
4.2 Doping with other ions
5 Conclusions and outlook

中图分类号: 

()

[1] Li G H, Azuma H, Tohda M J.Electrochem.Soc., 2002, 149 (6): A743-A747
[2] Takahashi M, Tobishima S, Takei K, Sakurai Y.Solid State Ionics, 2002, 148 (3/4): 283-289
[3] Andersson A S, Thomas J O, Kalska B, Haggstrom L.Elec-trochem.Solid State Lett., 2000, 3 (2): 66-68
[4] Iltchev N, Chen Y, Okada S, Yamaki J.J.Power Sources, 2003, 119/121: 749-754
[5] 吴宇平(Wu Y P),戴晓兵(Dai X B),马军旗(Ma J Q),程预江(Cheng Y J).锂离子电池-应用与实践(Lithium Ion Battery-Application and Practice).北京:化学工业出版社(Beijing:Chemical Industry Press),2004.191-206
[6] Morgan D, Ceder G, Saidi M Y, Barker J.Chem.Mater., 2002, 14(1): 4684-4693
[7] Yin S C, Grondey H, Strobel P, Anne M.J.Am.Chem.Soc., 2003, 125: 10402-10411
[8] Saidi M Y, Barker J, Huang H.Electrochem.Solid-State Soc., 2002, 5 (7): A149-A151
[9] Yin S C, Grondey H, Strobel P, Huang H.J.Am.Chem.Soc., 2003, 125(2): 326-327
[10] Morgan D, Ceder G, Saidi M Y, Barker J, Swoyer J, Huang H, Adamson G.J.Power Sources, 2003, 119/121: 755-759
[11] Saidi M Y, Barker J, Huang H, Swoyer L, Adamson G.J.Power Sources, 2003, 119/121: 266-272
[12] Gaubicher J, Wurm C, Goward G.Chem.Mater., 2000, 12(11): 3240-3242
[13] Barker J, Saidi M Y, Swoyer J L.J.Electrochem.Soc., 2003, 150 (10): 1394-1398
[14] Barker J, Saidi M Y, Swoyer J L.J.Electrochem.Soc., 2004, 151(10): A1670-A1677
[15] Barker J, Gover R K B, Burns P, Bryan P, Saidi M Y, Swoyer J L.J.Electrochem.Soc., 2005, 152 (9): A1776-A1779
[16] Barker J, Gover R K B, Burns P, Bryan P.Electrochem.Solid-State Lett., 2005, 8(6): A285-A287
[17] Barker J, Gover R K B, Burns P, Bryan A, Saidi M Y, Swoyer J L.J.Power Sources, 2005, 146: 516-520
[18] Azmi B M, Ishihara T, Nishiguchi H, Takita Y.Electrochim.Acta, 2002, 48: 165-170
[19] Lim S C, Vaughey J T W, Harrison T A, Dussacka L L, Jacobsona A J, Johnson J W.Solid State Ionics, 1996, 84: 219-226
[20] Dupre N, Wallez G, Gaubicher J, Quarton M.J.Solid State Chem., 2004, 177: 2896-2902
[21] Dupre N, Gaubicher J, Mercier T L, Wallez G, Angenault J, Quarton M.Solid State Ionics, 2001, 140: 209-221
[22] Song Y, Peter Y Z, Whittingham S.J.Electrochem.Soc., 2005, 152(4): A721-A728
[23] Ayyappana P, Ramanana A, Joyb P A.Solid State Ionics, 1998, 107: 53-57
[24] Amoros P, Marcos M D, Roca M, Alamo J, Beltrán-Porter A, Beltrán-Porter D.J.Phy.Chem.Solids, 2001, 62: 1393-1399
[25] Kerr T A, Gaubicher J, Nazarz L F.Electrochem.Solid-State Lett., 2000, 3 (10): 460-462
[26] Gaubicher J, Mercier T L, Chabre Y, Angenault J, Quarton M.J.Electrochem.Soc., 1999, 146 (12): 4375-4379
[27] Azmia B M, Ishihara T, Nishiguchi H, Takita Y.J.Power Sources, 2005, 146: 525-528
[28] Bustam M A, Hasanaly S M, Ishihara T, Takita Y.Ionics, 2005, 11: 402-405
[29] Barker J, Saidi M Y, Swoyer J L.J.Electrochem.Soc., 2004, 151(6): A796-A800
[30] Wurm C, Morcrette M, Rousse G, Dupont L, Masquelier C.Chem.Mater., 2002,14 (6): 2701-2710
[31] Barker J, Gover R K B, Burns P, Bryan A.Electrochem.Solid-State Lett., 2005, 9: A446-A4448
[32] Patoux S, Wurm C, Morcrette M, Rousse G, Masquelier C.J.Power Sources, 2003, 119/121: 278-284
[33] Barker J, Saidi M Y, Swoyer J L.J.Electrochem.Soc., 2003,150 (6): A684-A688
[34] Huang H, Yin S C, Kerr T, Taylor N, Nazar L F.Adv.Mater., 2002, 14(21): 1525-1528
[35] Li Y Z, Zhou Z, Gao X P, Yan J.Electrochim.Acta, 2007, 52: 4922-4926
[36] Ren M M, Zhou Z, Gao X P, Peng W X, Wei J P.J.Phys.Chem.C, 2008, 112: 5689-5693
[37] Li Y Z, Zhou Z, Gao X P, Yan J.J.Power Sources, 2006, 160: 633-637
[38] Ren M M, Zhou Z, Su L W, Gao X P.J.Power Sources, 2009, 189: 786-789
[39] Yang G, Ji H M, Liu H D, Qian B, Jiang X F.Electrochim.Acta, 2010, 55: 3669-3680
[40] Yang G, Liu H D, Ji H M, Chen Z Z, Jiang X F.Electro-chimi.Acta, 2010, 55: 2951-2957
[41] 任慢慢(Ren M M),李宇展(Li Y Z),周震(Zhou Z),高学平(Gao X P),阎杰(Yan J).电池(Battery bimonthly), 2006, 36:13-14
[42] Ren M M, Zhou Z, Gao X P, Liu L, Peng W X.J.Phys.Chem.C, 2008, 112: 13043-13046
[43] Chang C X, Xiang J F, Shi X X, Han X Y, Yuan L J, Sun J T.Electrochim.Acta, 2008, 54: 623-627
[44] Burba C M, Frnch R.Solid State Ionics, 2007, 177: 3445-3454
[45] Yu F, Zhang J J, Yang Y F, Song G Z.J.Solid State Electro-chem., 2010, 14:883-888
[46] Tarascon J M, Armand M.Nature, 2001, 414: 359-367
[47] Nanjundaswamy K S, Padhi A K, Goodenough J B, Okada S, Ohtsuka H, Arai H, Yamaki J.Solid State Ionics, 1996, 92 (1/2): 1-10
[48] 施志聪(Shi Z C),杨勇(Yang Y).化学进展(Progress in Chemistry), 2005, 4: 604-613
[49] Sun Y K, Myung S T, Kim M H.J.Am.Chem.Soc., 2005, 127:13411-13419
[50] Wang Y G, Wang Y R, Hosono E, Wang K X, Zhou H S.Angew.Chem.Int.Ed., 2008, 47: 7461-7465
[51] Reddy M V, Subba Rao G V, Chowdari B V R.J.Power Sources, 2010, 195: 5768-5774
[52] Wang F, Wu F, Wu C, Bai Y, Wang L.Adv.Mater.Research Vols., 2010, 129/131: 521-525
[53] Wang L, Zhang L C, Lieberwirth I, Xu H W, Chen C H.Electrochem.Comm., 2010, 12: 52-55
[54] Jiang T, Du F, Zhang K J, Wei Y J, Li Z, Wang C Z, Chen G.Solid State Sciences, 2010, 12: 1672-1676
[55] Tang A P, Wang X Y, Liu Z M.Materials Lett., 2008, 62: 1646-1648
[56] Wang L J, Zhou X C, Guo Y L.J.Power Sources, 2010, 195: 2844-2850
[57] Rui X H, Li C, Chen C H.Electrochim.Acta, 2009, 54: 3374-3380
[58] Chang C X, Xiang J F, Shi X X, Han X Y, Yuan L J, Sun J T.Electrochim.Acta, 2008, 53: 2232-2237
[59] Wang X Y, Yin S Y, Zhang K L, Zhang Y X.J.Alloy Comp., 2009, 486: L5-L7
[60] Wang J W, Liu J, Yang G L, Zhang X F, Yan X D, Pan X M, Wang R S.Electrochim.Acta, 2009, 54: 6451-6454
[61] Jiang T, Pan W C, Wang J, Bie X F, Du F, Wei Y J, Wang C Z, Chen G.Electrochim.Acta, 2010, 55: 3864-3869
[62] Jiang T, Wei Y J, Pan W C, Li Z, Ming X, Chen G, Wang C Z.J.Alloys Comp., 2009, 488: L26-L29
[63] Zhang L, Wang X L, Xiang J Y, Zhou Y, Shi S J, Tu J P.J.Power Sources, 2010, 195: 5057-5061
[64] Ren M M, Zhou Z, Li Y Z, Gao X P, Yan J.J.Power Sources, 2006, 162: 1357-1362
[65] Chen Y H, Zhao Y M, An X N, Liu J M, Dong Y Z, Chen L.Electrochim.Acta, 2009, 54: 5844-5850
[66] Kuang Q, Zhao Y M, An X N, Liu J M, Dong Y Z, Chen L.Electrochim.Acta, 2010, 55: 1575-1581
[67] Huang J S, Yang L, Liu K Y, Tang Y F.J.Power Sources, 2010, 195: 5013-5018
[68] Dai C S, Chen Z Y, Jin H Z, Hu X G.J.Power Sources, 2010, 195: 5775-5779
[69] Barker J, Gover R K B, Burns P, Bryan A.J.Electrochem.Soc., 2007, 154 (4): A307-A313
[70] 刘素琴(Liu S Q), 李世彩(Li S C), 黄可龙(Huang K L),陈朝晖(Chen Z H).物理化学学报(Acta Phys.-Chim.Sin.), 2007, 23: 537-542

[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[4] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[5] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[6] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[7] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[8] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[9] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[10] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[11] 周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 水系锌离子电池锰基正极材料[J]. 化学进展, 2021, 33(4): 649-669.
[12] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[13] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[14] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[15] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
阅读次数
全文


摘要

钒系磷酸盐锂离子电池正极材料