English
新闻公告
More
化学进展 2022, Vol. 34 Issue (4): 950-962 DOI: 10.7536/PC210442 前一篇   后一篇

• 综述 •

磁性NiFe2O4基复合材料的构筑及光催化应用

李晓微1, 张雷2,*(), 邢其鑫1, 昝金宇1, 周晋1, 禚淑萍1   

  1. 1 山东理工大学化学化工学院 淄博 255000
    2 安徽理工大学材料科学与工程学院 淮南 232001
  • 收稿日期:2021-04-22 修回日期:2021-07-27 出版日期:2022-04-24 发布日期:2021-07-29
  • 通讯作者: 张雷
  • 基金资助:
    国家自然科学基金项目(51502162); 国家自然科学基金项目(21975001); 安徽省高等学校自然科学研究项目(KJ2019A0115); 山东理工大学青年教师发展支持计划资助

Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis

Xiaowei Li1, Lei Zhang2(), Qixin Xing1, Jinyu Zan1, Jin Zhou1, Shuping Zhuo1   

  1. 1 School of Chemistry and Chemical Engineering, Shandong University of Technology,Zibo 255000, China
    2 School of Materials Science and Engineering, Anhui University of Science and Technology,Huainan 232001, China
  • Received:2021-04-22 Revised:2021-07-27 Online:2022-04-24 Published:2021-07-29
  • Contact: Lei Zhang
  • Supported by:
    National Natural Science Foundation of China(51502162); National Natural Science Foundation of China(21975001); Key Project of Natural Science Research for Colleges and Universities of Anhui Province of China(KJ2019A0115); Young Teacher Supporting Fund of Shandong University of Technology

随着社会经济的快速发展,能源短缺与环境污染已成为当前人类面临的两大难题。人们一直致力于开发新的清洁可再生替代能源, 其中,太阳能被认为是理想且具有发展潜力的清洁能源。光催化作为一种新型的“绿色技术”,可直接利用太阳能将环境中的有机污染物降解为无害物质,进而有效解决上述问题。然而,要实现这个过程关键在于合理地设计和构筑高性能的光催化剂。铁酸镍(NiFe2O4)作为一种磁性材料,兼具快速的磁响应性和良好的光化学稳定性,将其与能带匹配的半导体光催化剂复合,不仅能够获得活性高的光催化剂,而且实现了光催化剂的磁分离, 从而使其在光催化领域展现出极为广阔的应用前景。本文主要综述了近5年来国内外NiFe2O4基复合材料的制备和光催化应用方面的最新研究进展, 这将为新型高效磁性复合光催化材料的合成及应用提供新方法和新思路。最后,对NiFe2O4基复合光催化材料未来的发展前景做了展望。

Environmental pollution and energy shortage caused by the rapid development of the economy have become two major problems in modern society. Accordingly, much research is currently focused on the exploitation of new alternative energy sources. Among various energy sources, solar energy is considered to be ideal and renewable energy. Under sunlight irradiation, photocatalysis, as a novel “green technology”, can directly convert organic pollutants into innoxious substances to solve both energy crisis and environmental pollution. However, the key to the success of this process is dependent on the rational design and fabrication of efficient photocatalysts. The NiFe2O4 possessing fast magnetism response and good photochemistry stability, is coupled with other semiconductor photocatalysts having a suited band gap in order to obtain greatly effective photocatalytic systems and achieve the magnetic separation, exhibiting wide application foreground. This paper mainly reviews the latest research progress on the synthesis and photocatalytic application of NiFe2O4-based composites, which may open a new avenue and idea for preparing highly active and magnetically separable composite photocatalysts. Finally, the future development of NiFe2O4-based photocatalytic materials is also prospected.

Contents

1 Introduction

2 NiFe2O4/carbon materials

2.1 NiFe2O4/graphene

2.2 NiFe2O4/g-C3N4

2.3 NiFe2O4/other carbon materials

3 NiFe2O4/Bismuth-based compounds

3.1 NiFe2O4/BiOX

3.2 NiFe2O4/Aurivillius Bismuth-based oxide

3.3 NiFe2O4/other Bismuth-based compounds

4 NiFe2O4/Silver-based compounds

4.1 NiFe2O4/Ag3PO4

4.2 NiFe2O4/AgX

5 NiFe2O4/TiO2

6 NiFe2O4/ZnO

7 Conclusion and outlook

()
图1 NiFe2O4-RGO光催化降解MB的机理示意图[24]
Fig. 1 Mechanism of photocatalytic degradation of MB in the presence of NiFe2O4-RGO[24]
图2 g-C3N4/NiFe2O4的直接Z型光催化机理[35]
Fig. 2 The proposed direct Z-scheme photocatalytic mechanism for the g-C3N4/NiFe2O4 nanocomposite[35]
图3 g-C3N4/graphene/NiFe2O4的全固态Z型光催化机理[39]
Fig. 3 The proposed all-solid-state Z-scheme photocatalytic mechanism for the g-C3N4/graphene/NiFe2O4 nanocomposite[39]
图4 (a,b) NiFe2O4/C的SEM图,(c) TEM图,(d) HRTEM图[40]
Fig. 4 (a,b) SEM images,(c) TEM image and (d) HRTEM image of NiFe2O4/C[40]
表1 不同NiFe2O4/碳材料复合光催化降解污染物的性能对比
Table 1 The photocatalytic activity of pollutant degradation over different NiFe2O4/carbon material composites
图5 (a,b) NiFe2O4/BiOBr的TEM图[53]
Fig. 5 (a,b) TEM images of NiFe2O4/BiOBr[53]
图6 (a) NiFe2O4/BiOBr的TEM图; (b) NiFe2O4/BiOBr的HRTEM图[54]
Fig. 6 (a) TEM image of NiFe2O4/BiOBr; (b) HRTEM image of NiFe2O4/BiOBr[54]
图7 NiFe2O4/BiOI的能带结构和可能的电荷迁移路径[56]
Fig. 7 Band structure and possible photogenerated charges migration path of NiFe2O4/BiOI nanocomposite[56]
图8 Ag3PO4/Ag/NiFe2O4光催化降解MB的反应机理[81]
Fig. 8 Photocatalytic mechanism of MB degradation by Ag3PO4/Ag/NiFe2O4 composite[81]
图9 (a,b) Ag3PO4/GO/NiFe2O4的SEM图[82]
Fig. 9 (a,b) SEM images of Ag3PO4/GO/NiFe2 O4[82]
图10 Ag3PO4/GO/NiFe2O4的光催化机理[82]
Fig. 10 Photocatalytic mechanism of Ag3PO4/GO/NiFe2O4 composite[82]
图11 AFO/MOF/NFO的光催化机理[84]
Fig. 11 Photocatalytic mechanism of AFO/MOF/NFO[84]
[1]
Li X, Yu J G, Jaroniec M. Chem. Soc. Rev., 2016, 45(9): 2603.

doi: 10.1039/C5CS00838G     URL    
[2]
Qu Y Q, Duan X F. Chem. Soc. Rev., 2013, 42(7): 2568.

doi: 10.1039/C2CS35355E     URL    
[3]
Low J, Yu J G, Jaroniec M, Wageh S, Al-Ghamdi A A. Adv. Mater., 2017, 29(20): 1601694.

doi: 10.1002/adma.201601694     URL    
[4]
Dan M, Cai Q, Xiang J L, Li L J, Yu S, Zhou Y. Progress in Chemistry, 2020, 32(7): 917.
(淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 化学进展, 2020, 32(7): 917.).

doi: 10.7536/PC191209    
[5]
Guo L J, Li R, Liu J X, Xi Q, Fan C M. Progress in Chemistry, 2020, 32(1): 46.
(郭丽君, 李瑞, 刘建新, 席庆, 樊彩梅. 化学进展, 2020, 32(1): 46.).

doi: 10.7536/PC190528    
[6]
Wang H L, Zhang L S, Chen Z G, Hu J Q, Li S J, Wang Z H, Liu J S, Wang X C. Chem. Soc. Rev., 2014, 43(15): 5234.

doi: 10.1039/C4CS00126E     URL    
[7]
Dong S Y, Feng J L, Fan M H, Pi Y Q, Hu L M, Han X, Liu M L, Sun J Y, Sun J H. RSC Adv., 2015, 5(19): 14610.

doi: 10.1039/C4RA13734E     URL    
[8]
Anna K, Marcos F G, Gerardo C. Chem. Rev., 2012, 112(3): 1555.

doi: 10.1021/cr100454n     URL    
[9]
Zhu Y X, Zhang L, Zhang X, Li Z Y, Zha M, Li M, Hu G Z. Chem. Eng. J., 2021, 405: 127002.

doi: 10.1016/j.cej.2020.127002     URL    
[10]
Natarajan S, Bajaj H C, Tayade R J. J. Environ. Sci., 2018, 65: 201.

doi: 10.1016/j.jes.2017.03.011     URL    
[11]
Fujishima A, Honda K. Nature, 1972, 238(5358): 37.

doi: 10.1038/238037a0     URL    
[12]
Parashar A, Sikarwar S, Jain R. J. Dispers. Sci. Technol., 2020, 41(6): 884.

doi: 10.1080/01932691.2019.1614030     URL    
[13]
Hirthna, Sendhilnathan S, Rajan P I, Adinaveen T. J. Supercond. Nov. Magn., 2018, 31(10): 3315.

doi: 10.1007/s10948-018-4601-3     URL    
[14]
Talebi R. J. Mater. Sci.: Mater. Electron., 2017, 28(5): 4058.
[15]
Mohammadzadeh Kakhki R, Khorrampoor A, Rabbani M, Ahsani F. J. Mater. Sci.: Mater. Electron., 2017, 28(5): 4095.
[16]
Lassoued A, Lassoued M S, Dkhil B, Ammar S, Gadri A. J. Mater. Sci.: Mater. Electron., 2018, 29(9): 7057.
[17]
Shetty K, Renuka L, Nagaswarupa H P, Nagabhushana H, Anantharaju K S, Rangappa D, Prashantha S C, Ashwini K. Mater. Today: Proc., 2017, 4(11): 11806.
[18]
Domínguez-Arvizu J L, JimÉnez-Miramontes J A, Salinas-GutiÉrrez J M, MelÉndez-Zaragoza M J, LÓpez-Ortiz A, Collins-Martínez V. Int. J. Hydrog. Energy, 2019, 44(24): 12455.

doi: 10.1016/j.ijhydene.2018.08.148     URL    
[19]
Shan A X, Wu X, Lu J, Chen C, Wang R M. CrystEngComm, 2015, 17(7): 1603.

doi: 10.1039/C4CE02139H     URL    
[20]
Peng T Y, Zhang X H, Lv H, Zan L. Catal. Commun., 2012, 28: 116.

doi: 10.1016/j.catcom.2012.08.031     URL    
[21]
Su B T, He F Z, Dong N, Xin J L, Dong Y Y, Jin Z J, Chin. J. Inorg. Chem., 2016, 32(1): 69.
(苏碧桃, 何方振, 董娜, 莘俊莲, 董永永, 靳正娟. 无机化学学报, 2016, 32(1): 69).
[22]
Zhu H Y, Jiang R, Fu Y Q, Li R R, Yao J, Jiang S T. Appl. Surf. Sci., 2016, 369: 1.

doi: 10.1016/j.apsusc.2016.02.025     URL    
[23]
Hong D C, Yamada Y, Nagatomi T, Takai Y, Fukuzumi S. J. Am. Chem. Soc., 2012, 134(48): 19572.

doi: 10.1021/ja309771h     URL    
[24]
Liang J X, Wei Y, Zhang J G, Yao Y, He G Y, Tang B, Chen H Q. Ind. Eng. Chem. Res., 2018, 57(12): 4311.

doi: 10.1021/acs.iecr.8b00218     URL    
[25]
Bayantong A R B, Shih Y J, Dong C D, Garcia-Segura S, Luna M D G. Environ. Sci. Pollut. Res., 2021, 28(5): 5472.

doi: 10.1007/s11356-020-10545-1     URL    
[26]
Xu J H, Tan L H, Kou B, Hang Z S, Jiang W, Jia Y Q. Progress in Chemistry, 2016, 28(1): 131.
(徐建华, 谈玲华, 寇波, 杭祖圣, 姜炜, 郏永强. 化学进展, 2016, 28(1): 131.).

doi: 10.7536/PC150734    
[27]
Mousavi M, Habibi-Yangjeh A, Pouran S R. J. Mater. Sci.: Mater. Electron., 2018, 29(3): 1719.

doi: 10.1007/BF00351288     URL    
[28]
Li Y, Li X, Zhang H W, Xiang Q J. Nanoscale Horiz., 2020, 5(5): 765.

doi: 10.1039/D0NH00046A     URL    
[29]
Yin S M, Han J Y, Zhou T H, Xu R. Catal. Sci. Technol., 2015, 5(12): 5048.

doi: 10.1039/C5CY00938C     URL    
[30]
Reddy K R, Reddy C V, Nadagouda M N, Shetti N P, Jaesool S, Aminabhavi T M. J. Environ. Manag., 2019, 238: 25.

doi: 10.1016/j.jenvman.2019.02.075     URL    
[31]
Sudhaik A, Raizada P, Shandilya P, Jeong D Y, Lim J H, Singh P. J. Ind. Eng. Chem., 2018, 67: 28.

doi: 10.1016/j.jiec.2018.07.007     URL    
[32]
Darkwah W K, Ao Y H. Nanoscale Res. Lett., 2018, 13(1): 1.

doi: 10.1186/s11671-017-2411-3     URL    
[33]
Liu Y, Song Y C, You Y H, Fu X J, Wen J, Zheng X G. J. Saudi Chem. Soc., 2018, 22(4): 439.

doi: 10.1016/j.jscs.2017.08.002     URL    
[34]
Palanivel B, Ayappan C, Jayaraman V, Chidambaram S, Maheswaran R, Mani A. Mater. Sci. Semicond. Process., 2019, 100: 87.

doi: 10.1016/j.mssp.2019.04.040     URL    
[35]
Gebreslassie G, Bharali P, Chandra U, Sergawie A, Baruah P K, Das M R, Alemayehu E. Appl. Organomet. Chem., 2019, 33(8): e5002.
[36]
Chen X M, He M L, He G Y, Zhou Y, Ren J, Meng C. Appl. Nanosci., 2020, 10(12): 4465.

doi: 10.1007/s13204-020-01362-6     URL    
[37]
Kamal S, Balu S, Palanisamy S, Uma K, Velusamy V, Yang T C K. Results Phys., 2019, 12: 1238.

doi: 10.1016/j.rinp.2019.01.004     URL    
[38]
Mishra P, Behera A, Kandi D, Parida K. Nanoscale Adv., 2019, 1(5): 1864.

doi: 10.1039/C9NA00018F     URL    
[39]
Gebreslassie G, Bharali P, Chandra U, Sergawie A, Boruah P K, Das M R, Alemayehu E. J. Photochem. Photobiol. A: Chem., 2019, 382: 111960.

doi: 10.1016/j.jphotochem.2019.111960     URL    
[40]
Chen Z, Gao Y T, Mu D Z, Shi H F, Lou D W, Liu S Y. Dalton Trans., 2019, 48(9): 3038.

doi: 10.1039/c9dt00396g     pmid: 30758024
[41]
Nawaz M, Shahzad A, Tahir K, Kim J, Moztahida M, Jang J, Alam M B, Lee S H, Jung H Y, Lee D S. Chem. Eng. J., 2020, 382: 123053.

doi: 10.1016/j.cej.2019.123053     URL    
[42]
He R A, Cao S W, Zhou P, Yu J G. Chin. J. Catal., 2014, 35(7): 989.

doi: 10.1016/S1872-2067(14)60075-9     URL    
[43]
Cao X J, Zhang L, Zhu Y X, Zhang X, Lv N, Hou C M. Prog. Chem., 2020, 32(Z1): 262.
(秀军, 张雷, 朱元鑫, 张鑫, 吕超南, 侯长民. 化学进展, 2020, 32(Z1): 262.)
[44]
Song J, Zhang L, Yang J, Huang X H, Hu J S. Ceram. Int., 2017, 43(12): 9214.

doi: 10.1016/j.ceramint.2017.04.075     URL    
[45]
Song J, Zhang L, Yang J, Huang X H, Hu J S. Mater. Des., 2017, 123: 128.

doi: 10.1016/j.matdes.2017.03.046     URL    
[46]
Song J, Zhang L, Yang J, Hu J S, Huang X H. J. Alloys Compd., 2018, 735: 660.

doi: 10.1016/j.jallcom.2017.11.190     URL    
[47]
Meng X C, Zhang Z S. J. Mol. Catal. A: Chem., 2016, 423: 533.

doi: 10.1016/j.molcata.2016.07.030     URL    
[48]
Yang Y, Zhang C, Lai C, Zeng G M, Huang D L, Cheng M, Wang J J, Chen F, Zhou C Y, Xiong W P. Adv. Colloid Interface Sci., 2018, 254: 76.

doi: 10.1016/j.cis.2018.03.004     URL    
[49]
Cheng H F, Huang B B, Dai Y. Nanoscale, 2014, 6(4): 2009.

doi: 10.1039/c3nr05529a     URL    
[50]
Xu H F, Xu Z C, Zhou J, Yan G, Li X W, Zhuo S P. Ceram. Int., 2019, 45(12): 15458.

doi: 10.1016/j.ceramint.2019.05.048     URL    
[51]
Lv D, Zhang D F, Liu X Y, Liu Z R, Hu L J, Pu X P, Ma H Y, Li D C, Dou J M. Sep. Purif. Technol., 2016, 158: 302.

doi: 10.1016/j.seppur.2015.12.032     URL    
[52]
Ji H Y, Jing X C, Xu Y G, Yan J, Li Y P, Huang L Y, Zhang Q, Xu H, Li H M. Fresenius Environ Bull, 2016, 25(8): 3083.
[53]
Li X W, Wang L, Zhang L, Zhuo S P. Appl. Surf. Sci., 2017, 419: 586.

doi: 10.1016/j.apsusc.2017.05.013     URL    
[54]
Li X W, Xu H F, Wang L, Zhang L, Cao X F, Guo Y C. J. Taiwan Inst. Chem. Eng., 2018, 85: 257.

doi: 10.1016/j.jtice.2018.01.043     URL    
[55]
He Z M, Xia Y M, Su J B, Tang B. Opt. Mater., 2019, 88: 195.

doi: 10.1016/j.optmat.2018.11.025     URL    
[56]
Xia Y M, He Z M, Su J B, Tang B, Hu K J, Lu Y L, Sun S P, Li X P. RSC Adv., 2018, 8(8): 4284.

doi: 10.1039/C7RA12546A     URL    
[57]
Jiang Z, Chen L D, Shi N Q, Ji L. Mater. Res. Express, 2019, 6(6): 066207.

doi: 10.1088/2053-1591/ab0c39     URL    
[58]
Zhang Z, Zou C T, Yang S J. Progress in Chemistry, 2020, 32(9): 1427.

doi: 10.7536/PC200526    
(张志, 邹晨涛, 杨水金. 化学进展, 2020, 32(9): 1427.).

doi: 10.7536/PC200526    
[59]
Dong S Y, Ding X H, Guo T, Yue X P, Han X, Sun J H. Chem. Eng. J., 2017, 316: 778.

doi: 10.1016/j.cej.2017.02.017     URL    
[60]
Zhao Y Y, Liang X H, Wang Y B, Shi H X, Liu E Z, Fan J, Hu X Y. J. Colloid Interface Sci., 2018, 523: 7.

doi: 10.1016/j.jcis.2018.03.078     URL    
[61]
Zhao Y Y, Wang Y B, Liu E Z, Fan J, Hu X Y. Appl. Surf. Sci., 2018, 436: 854.

doi: 10.1016/j.apsusc.2017.12.064     URL    
[62]
Xiao L B, Lin R B, Wang J, Cui C, Wang J Y, Li Z Q. J. Colloid Interface Sci., 2018, 523: 151.

doi: 10.1016/j.jcis.2018.03.064     URL    
[63]
Xue W J, Peng Z W, Huang D L, Zeng G M, Wen X J, Deng R, Yang Y, Yan X L. Ceram. Int., 2019, 45(5): 6340.

doi: 10.1016/j.ceramint.2018.12.119     URL    
[64]
Zhang G Q, Zhou S X, Liu J, Dong B S, Zeng M. Mater. Res. Innov., 2015, 19(3): S363.
[65]
Zarringhadam P, Farhadi S. J. Alloys Compd., 2017, 729: 1046.

doi: 10.1016/j.jallcom.2017.09.247     URL    
[66]
Malathi A, Madhavan J, Ashokkumar M, Arunachalam P. Appl. Catal. A: Gen., 2018, 555: 47.

doi: 10.1016/j.apcata.2018.02.010     URL    
[67]
Zhao Y, Li R G, Mu L C, Li C. Cryst. Growth Des., 2017, 17(6): 2923.

doi: 10.1021/acs.cgd.7b00291     URL    
[68]
Lv D, Zhang D F, Pu X P, Kong D Z, Lu Z H, Shao X, Ma H Y, Dou J M. Sep. Purif. Technol., 2017, 174: 97.

doi: 10.1016/j.seppur.2016.10.010     URL    
[69]
Wang Q Z, He J J, Shi Y B, Zhang S L, Niu T J, de She H, Bi Y P, Lei Z Q. Appl. Catal. B: Environ., 2017, 214: 158.

doi: 10.1016/j.apcatb.2017.05.044     URL    
[70]
Sakhare P A, Pawar S S, Bhat T S, Yadav S D, Patil G R, Patil P S, Sheikh A D. Mater. Res. Bull., 2020, 129: 110908.

doi: 10.1016/j.materresbull.2020.110908     URL    
[71]
Ji L, Chen L D, Jiang Z. Chem. Pap., 2018, 72(12): 3195.

doi: 10.1007/s11696-018-0552-1     URL    
[72]
Zhang D F, Pu X P, Du K P, Yu Y M, Shim J J, Cai P Q, Kim S I, Seo H J. Sep. Purif. Technol., 2014, 137: 82.

doi: 10.1016/j.seppur.2014.09.025     URL    
[73]
Boukhemikhem Z, Brahimi R, Rekhila G, Fortas G, Boudjellal L, Trari M. Renew. Energy, 2020, 145: 2615.

doi: 10.1016/j.renene.2019.08.021     URL    
[74]
Ge M, Li Z L. Chin. J. Catal., 2017, 38(11): 1794.

doi: 10.1016/S1872-2067(17)62905-X     URL    
[75]
Chen X J, Dai Y Z, Wang X Y. J. Alloys Compd., 2015, 649: 910.

doi: 10.1016/j.jallcom.2015.07.174     URL    
[76]
Yang Z M, Tian Y, Huang G F, Huang W Q, Liu Y Y, Jiao C, Wan Z, Yan X G, Pan A L. Mater. Lett., 2014, 116: 209.

doi: 10.1016/j.matlet.2013.11.041     URL    
[77]
Yi Z G, Ye J H, Kikugawa N, Kako T, Ouyang S X, Stuart-Williams H, Yang H, Cao J Y, Luo W J, Li Z S, Liu Y, Withers R L. Nat. Mater., 2010, 9(7): 559.

doi: 10.1038/nmat2780     URL    
[78]
Patil S S, Tamboli M S, Deonikar V G, Umarji G G, Ambekar J D, Kulkarni M V, Kolekar S S, Kale B B, Patil D R. Dalton Trans., 2015, 44(47): 20426.

doi: 10.1039/C5DT03173G     URL    
[79]
Zhao G Y, Liu L J, Li J R, Liu Q. J. Alloys Compd., 2016, 664: 169.

doi: 10.1016/j.jallcom.2016.01.004     URL    
[80]
Huang S Q, Xu Y G, Zhou T, Xie M, Ma Y, Liu Q Q, Jing L Q, Xu H, Li H M. Appl. Catal. B: Environ., 2018, 225: 40.

doi: 10.1016/j.apcatb.2017.11.045     URL    
[81]
Dong T, Wang P, Yang P. Int. J. Hydrog. Energy, 2018, 43(45): 20607.

doi: 10.1016/j.ijhydene.2018.09.079     URL    
[82]
Zhou T H, Zhang G Z, Yang H, Zhang H W, Suo R N, Xie Y S, Liu G. RSC Adv., 2018, 8(49): 28179.

doi: 10.1039/C8RA02962H     URL    
[83]
Chen Y J, Zhu P F, Duan M, Li J, Ren Z H, Wang P P. Appl. Surf. Sci., 2019, 486: 198.

doi: 10.1016/j.apsusc.2019.04.232     URL    
[84]
Zhou T H, Zhang G Z, Zhang H W, Yang H, Ma P J, Li X T, Qiu X L, Liu G. Catal. Sci. Technol., 2018, 8(9): 2402.

doi: 10.1039/C8CY00182K     URL    
[85]
Ge M, Hu Z. Ceram. Int., 2016, 42(5): 6510.

doi: 10.1016/j.ceramint.2016.01.035     URL    
[86]
Ge M, Liu W, Hu X R, Li Z L. J. Phys. Chem. Solids, 2017, 109: 1.

doi: 10.1016/j.jpcs.2017.05.008     URL    
[87]
Gao X, Liu X X, Zhu Z M, Xie Z, She Z B. J. Inorg. Mater., 2016, 31(9): 935.

doi: 10.15541/jim20160048     URL    
(高鑫, 刘祥萱, 朱左明, 谢拯, 佘兆斌, 无机材料学报, 2016, 31(9): 935.).

doi: 10.15541/jim20160048    
[88]
Liu Y W, Gao P Z, Cherkasov N, Rebrov E V. RSC Adv., 2016, 6(103): 100997.

doi: 10.1039/C6RA22659K     URL    
[89]
Baig M M, Pervaiz E, Afzal M J. J. Chem. Soc. Pak., 2020, 42(4): 531.
[90]
Rao R, Zhang X, Sun X, Wang M, Ma Y Q. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2020, 35(2): 320.

doi: 10.1007/s11595-020-2259-8     URL    
(饶瑞, 张贤, 孙潇, 王敏, 马永青. 武汉理工大学学报-材料科学版, 2020, 35(2): 320.).
[91]
Šutka A, Käämbre T, Pärna R, Döbelin N, Vanags M, Smits K, Kisand V. RSC Adv., 2016, 6(23): 18834.

doi: 10.1039/C6RA00728G     URL    
[92]
Chen Y, Wu Q, Jin Q T, Liu K R. Adv. Powder Technol., 2021, 32(3): 974.

doi: 10.1016/j.apt.2021.02.028     URL    
[93]
Wang Y H, Yan H X, Zhang Q Y. J. Chin. Chem. Soc., 2018, 65(7): 868.

doi: 10.1002/jccs.201700458     URL    
[94]
Saravani A Z, Nadimi M, Aroon M A, Pirbazari A E. J. Alloys Compd., 2019, 803: 291.

doi: 10.1016/j.jallcom.2019.06.245     URL    
[95]
Rahmayeni R, Zulhadjri Z, Jamarun N, Emriadi E, Arief S. Orient. J. Chem, 2016, 32(3): 1411.

doi: 10.13005/ojc/320315     URL    
[96]
Adeleke J T, Theivasanthi T, Thiruppathi M, Swaminathan M, Akomolafe T, Alabi A B. Appl. Surf. Sci., 2018, 455: 195.

doi: 10.1016/j.apsusc.2018.05.184     URL    
[97]
Soto-Arreola A, Huerta-Flores A M, Mora-Hernández J M, Torres-Martínez L M. J. Photochem. Photobiol. A: Chem., 2018, 364: 433.

doi: 10.1016/j.jphotochem.2018.06.033     URL    
[98]
Moradi S, Taghavi Fardood S, Ramazani A. J. Mater. Sci.: Mater. Electron., 2018, 29(16): 14151.
[99]
Yeganeh F E, Yousefi M, Hekmati M, Bikhof M. C. R. Chim., 2020, 23(6/7): 385.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[5] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[6] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[7] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[8] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[9] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[10] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[11] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[12] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[13] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[14] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[15] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.