三维自适应FE-SPH耦合算法在多层间隔金属靶侵彻问题中的应用

胡德安 孙占华 朱婷

胡德安, 孙占华, 朱婷. 三维自适应FE-SPH耦合算法在多层间隔金属靶侵彻问题中的应用[J]. 爆炸与冲击, 2015, 35(3): 416-422. doi: 10.11883/1001-1455-(2015)03-0416-07
引用本文: 胡德安, 孙占华, 朱婷. 三维自适应FE-SPH耦合算法在多层间隔金属靶侵彻问题中的应用[J]. 爆炸与冲击, 2015, 35(3): 416-422. doi: 10.11883/1001-1455-(2015)03-0416-07
Hu De-an, Sun Zhan-hua, Zhu Ting. Application of 3D FE-SPH adaptive coupling algorithm to penetration analysis of spaced multi-layered metallic targets[J]. Explosion And Shock Waves, 2015, 35(3): 416-422. doi: 10.11883/1001-1455-(2015)03-0416-07
Citation: Hu De-an, Sun Zhan-hua, Zhu Ting. Application of 3D FE-SPH adaptive coupling algorithm to penetration analysis of spaced multi-layered metallic targets[J]. Explosion And Shock Waves, 2015, 35(3): 416-422. doi: 10.11883/1001-1455-(2015)03-0416-07

三维自适应FE-SPH耦合算法在多层间隔金属靶侵彻问题中的应用

doi: 10.11883/1001-1455-(2015)03-0416-07
基金项目: 国家自然科学基金项目(10902038)
详细信息
    作者简介:

    胡德安(1977—), 男, 博士, 教授, 博士生导师, hudean@163.com

  • 中图分类号: O383.3

Application of 3D FE-SPH adaptive coupling algorithm to penetration analysis of spaced multi-layered metallic targets

  • 摘要: 鉴于有限元算法不能有效地模拟侵彻过程所产生的金属碎片, 本文中基于三维自适应FE-SPH耦合算法的基本理论, 自主开发了模拟多层间隔金属靶侵彻问题的三维FE-SPH耦合计算程序。该程序采用四面体单元对多层间隔金属靶侵彻模型进行初始离散, 计算过程中, 当四面体单元等效塑性应变超过某一设定值时, 单元自动转化为SPH粒子, 并引入有限单元-粒子接触算法和耦合算法, 实现大变形和破碎区域采用SPH方法计算, 克服有限元法单元畸变存在的问题。多层间隔靶侵彻算例分析表明, 三维FE-SPH耦合计算程序采用等效塑性应变作为转化判据计算结果较稳定, 并且能够有效地再现侵彻过程中所产生的碎片, 能够模拟侵彻碎片对后层靶的毁伤效应。
  • 图  1  FE-SPH自适应耦合算法计算流程

    Figure  1.  The flow chat of adaptive FE-SPH coupling method

    图  2  数值模型

    Figure  2.  Numerical model

    图  3  实验用弹靶尺寸

    Figure  3.  Geometries of the targets and projectile

    图  4  FE-SPH耦合算法计算结果

    Figure  4.  Computional result by using FE-SPH method

    图  5  计算得到的子弹速度时程曲线

    Figure  5.  Histories of the projectile velocities by simulation

    图  6  2层间隔金属靶斜侵彻示意图

    Figure  6.  Sketch of two-layered metallic targets under oblique penetration

    图  7  第1层靶侵彻破坏图像

    Figure  7.  Results of experiment and simulation in the first target

    图  8  第2层靶侵彻破坏图像

    Figure  8.  Results of experiment and simulation in the second target

    表  1  实验数据[6]与计算结果比较

    Table  1.   Comparison between experimental and simulation results

    v/(m·s-1) v/(m·s-1) FEM δ/% FE-SPH δ/%
    No. 工况2 工况3 工况4 工况6 工况8 工况9
    v0 1267.0 1269.0 1308.0 1341.0 1286.0 1280.0 1291.8 1300.0 -0.63 1300.0 -0.63
    v1 1092.0 1150.0 954.0 1088.0 1196.0 1080.0 1093.3 1065.2 2.57 1119.1 -2.36
    v2 968.0 - - 822.0 961.0 878.0 907.3 861.4 5.06 917.2 -1.09
    v3 - - - - 750.0 - 750.0 651.1 13.19 741.1 1.15
    v4 - - - - - 551.0 551.0 457.3 17.01 571.5 -3.72
    下载: 导出CSV
  • [1] Forrestal M J, Bϕrvik T, Warren T L. Perforation of 7075-T651 aluminum armor plates with 7.62 mm APM2 bullets[J]. Experimental Mechanics, 2010, 50(8): 1245-1251. doi: 10.1007/s11340-009-9328-4
    [2] Bϕrvik T, Clansen A H, Eriksson M, et al. Experimental and numerical study on the perforation of AA6005-T6 panels[J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 35-64.
    [3] Gupta N K, Madhu V. An experimental study of normal and oblique impact of hard-core projectile on single and layered plates[J]. International Journal of Impact Engineering, 1997, 19(5/6): 395-414. http://www.sciencedirect.com/science/article/pii/s0734743x97000018
    [4] 董永香, 冯顺山, 段相杰.弹丸斜侵彻多层间隔靶特性研究[J].中北大学学报:自然科学版, 2010, 31(3): 221-226. http://d.wanfangdata.com.cn/Periodical/hbgxyxb201003004

    Dong Yong-xiang, Feng Shun-shan, Duan Xiang-jie. Oblique penetration characteristics of multi-layered spaced targets by steel projectiles[J]. Journal of North University of China: Natural Science Edition, 2010, 31(3): 221-226. http://d.wanfangdata.com.cn/Periodical/hbgxyxb201003004
    [5] 朱锡, 梅志远, 刘润泉, 等.舰用轻型复合装甲结构及其抗弹实验研究[J].爆炸与冲击, 2003, 23(1): 61-66. http://d.wanfangdata.com.cn/Periodical/bzycj200301012

    Zhu Xi, Mei Zhi-yuan, Liu Run-quan, et al. Warship's light composite armor structure resistibility for ballistic impact[J]. Explosion and Shock Waves, 2003, 23(1): 61-66. http://d.wanfangdata.com.cn/Periodical/bzycj200301012
    [6] 岳小兵, 龙源, 方向, 等.高速模拟钢质弹丸侵彻多层靶仿真[J].解放军理工大学学报:自然科学版, 2003(4): 40-44. http://www.cnki.com.cn/Article/CJFDTotal-JFJL200304009.htm

    Yue Xiao-bing, Long Yuan, Fang Xiang, et al. Numerical simulation of steel projectile penetrating intomulti-layer spaced metal plates[J]. Journal of PLA University of Science and Technology: Natural Science, 2003(4): 40-44. http://www.cnki.com.cn/Article/CJFDTotal-JFJL200304009.htm
    [7] Bϕrvik T, Hopperstad O S, Pedersen K O. Quasi-brittle fracture during structural impact of AA7075-T651 aluminum plates[J]. International Journal of Impact Engineering, 2010, 37(5): 537-551. http://www.sciencedirect.com/science/article/pii/S0734743X09001924
    [8] Johnson G R. Linking of lagrangian particle methods to standard finite element methods for high velocity impact simulations[J]. Nuclear Engineering and Design, 1994(1): 265-274. http://www.sciencedirect.com/science/article/pii/0029549394901430
    [9] Johnson G R, Stryk R A. Symmetric contact and sliding interface algorithms for intense impulsive loading computations[J]. Compute Methods in Applied Mechanics and Engineering, 2001, 190(35/36): 4531-4549. http://www.sciencedirect.com/science/article/pii/S0045782500003315
    [10] Johnson G R, Stryk R A. Conversion of 3D distorted elements into meshless particles during dynamic deformation[J]. International Journal of Impact Engineering, 2003, 28(9): 947-966. http://www.sciencedirect.com/science/article/pii/S0734743X03000125
    [11] Sauer M. Simulation of high velocity impact in fluid-filled containers using finite elements with adaptive coupling to smoothed particle hydrodynamics[J]. International Journal of Impact Engineering, 2011, 38(6): 511-520. http://www.sciencedirect.com/science/article/pii/S0734743X10001697
    [12] Sonia F M, Javier B and Antonio H. Continuous blending of SPH with finite elements[J]. Computers & Structures, 2005, 83(17/18): 1448-1458. http://www.sciencedirect.com/science/article/pii/S004579490500074X
    [13] Vuyst T D, Vignjevic R, Campbell J C. Coupling between meshless and finite element methods[J]. International Journal of Impact Engineering, 2005, 31(8): 1054-1064. http://www.sciencedirect.com/science/article/pii/S0734743X0400082X
    [14] 王吉, 王肖钧, 卞梁.光滑粒子法与有限元的耦合算法及其在冲击动力学中的应用[J].爆炸与冲击, 2007, 27(6): 522-528. http://www.cqvip.com/Main/Detail.aspx?id=26408350

    Wang Ji, Wang Xiao-jun, Bian Liang. Linking of smoothed particle hydrodynamics method to standardfinite element method and its application in impact dynamics[J]. Explosion and Shock Waves, 2007, 27(6): 522-528. http://www.cqvip.com/Main/Detail.aspx?id=26408350
    [15] 梁超, 刘平, 胡德安, 等. FE-SPH自适应耦合方法模拟钢筋混凝土靶侵彻问题[C]//全国强动载效应及防护学术会议暨复杂介质/结构的动态力学行为创新研究群体学术研讨会论文集. 2013: 28-39.
    [16] 胡德安, 韩旭, 肖毅华, 等.光滑粒子法及其与有限元耦合算法的研究进展[J].力学学报, 2013, 45(5): 639-652.

    Hu De-an, Han Xu, Xiao Yi-hua, et al. Research developments of smoothed particle hydrodynamicsmethod and its coupling with finite element method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 639-652.
    [17] 杨刚, 梁超, 刘平, 等.基于三维FE-SPH自适应耦合算法的子弹侵彻混凝土靶跳飞问题模拟[J].工程力学, 2013, 30(9): 276-282. http://www.cqvip.com/QK/95324X/20139/47268989.html

    Yang Gang, Liang Chao, Liu Ping, et al. Numerical simulation of ricochet problem of projectile penetrating intoconcrete target based on 3d FE-SPH adaptive coupling algorithm[J]. Engineering Mechanics, 2013, 30(9): 276-282. http://www.cqvip.com/QK/95324X/20139/47268989.html
    [18] 肖毅华, 胡德安, 韩旭.一种有限元-光滑粒子流体动力学耦合算法[J].计算物理, 2011, 28(2): 219-225. http://d.wanfangdata.com.cn/Periodical/jswl201102009

    Xiao Yi-hua, Hu De-an, Han Xu. A coupling algorithm of finite element and smoothed particle hydrodynamics[J]. Chinese Journal of Computational Physics, 2011, 28(2): 219-225. http://d.wanfangdata.com.cn/Periodical/jswl201102009
    [19] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the Seventh International Symposium on Ballistics. Netherlands, 1983.
    [20] Gilat A, Wu X R. Plastic deformation of 1020 steel over a wide range of strain rates and temperatures[J]. International Journal of Plasticity, 1997, 13(6/7): 611-632. http://www.sciencedirect.com/science/article/pii/S0749641997000284
    [21] 范志强, 高德平, 覃志贤, 等. 20号钢的冲击拉伸力学性能试验研究[J].燃气涡轮试验与研究, 2006(4): 35-37. http://www.cnki.com.cn/Article/CJFDTotal-RQWL200604007.htm

    Fan Zhi-qiang, Gao De-ping, Qin Zhi-xian, et al. Experimental study of 20 steel under tensile impact[J]. Gas Turbine Experiment and Research, 2006(4): 35-37. http://www.cnki.com.cn/Article/CJFDTotal-RQWL200604007.htm
    [22] Schwer L. Optional strain-rate forms for the Johnson-cook constitutive model and the role of the parameter epsion _0[C]//Proceedings of the LS_DANY Anwenderforum. Frankenthal, Germany, 2007.
    [23] 吴海军, 姚伟, 黄风雷, 等.超高强度钢30Cr MnSiNi2A动态力学性能实验研究[J].北京理工大学学报, 2010, 3(3): 258-262. http://d.wanfangdata.com.cn/Periodical/bjlgdxxb201003002

    Wu Hai-jun, Yao Wei, Huang Feng-lei, et al. Experimental study on dynamic mechanical properties ofultrahigh strength 30Cr MnSiNi2A steel[J]. Transactions of Beijing Institute of Technology, 2010, 3(3): 258-262. http://d.wanfangdata.com.cn/Periodical/bjlgdxxb201003002
    [24] Jutras M. Improvement of the characterisation method of the Johnson-Cook model[D]. Quebec: Laval University, 2008.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  3064
  • HTML全文浏览量:  314
  • PDF下载量:  514
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-06
  • 修回日期:  2014-05-19
  • 刊出日期:  2015-05-25

目录

    /

    返回文章
    返回