油气在持续热壁下热着火发生的数值模拟

吴松林 杜扬 欧益宏 张培理 梁建军

吴松林, 杜扬, 欧益宏, 张培理, 梁建军. 油气在持续热壁下热着火发生的数值模拟[J]. 爆炸与冲击, 2018, 38(3): 541-548. doi: 10.11883/bzycj-2016-0262
引用本文: 吴松林, 杜扬, 欧益宏, 张培理, 梁建军. 油气在持续热壁下热着火发生的数值模拟[J]. 爆炸与冲击, 2018, 38(3): 541-548. doi: 10.11883/bzycj-2016-0262
WU Songlin, DU Yang, OU Yihong, ZHANG Peili, LIANG Jianjun. Numerical simulation of gasoline-air thermal ignition induced by continuous hot wall[J]. Explosion And Shock Waves, 2018, 38(3): 541-548. doi: 10.11883/bzycj-2016-0262
Citation: WU Songlin, DU Yang, OU Yihong, ZHANG Peili, LIANG Jianjun. Numerical simulation of gasoline-air thermal ignition induced by continuous hot wall[J]. Explosion And Shock Waves, 2018, 38(3): 541-548. doi: 10.11883/bzycj-2016-0262

油气在持续热壁下热着火发生的数值模拟

doi: 10.11883/bzycj-2016-0262
基金项目: 

重庆市基础与前沿研究项目 cstc2013jcyjA00006

详细信息
    作者简介:

    吴松林(1973-), 男, 博士, 教授, wusonglin100@163.com

  • 中图分类号: O381

Numerical simulation of gasoline-air thermal ignition induced by continuous hot wall

  • 摘要: 为了对油气在持续热壁下热着火发生过程进行数值模拟,耦合化学动力学模型、流体动力学模型及辐射传热模型,建立了油气热着火的统一模型。基于实验工况,模拟了受限空间中油气在持续热壁条件下热着火发生过程,并分析了温度、压力流场的演变特征,以及不同位置处温度、压力、层流速度、湍流速度和组分质量分数的变化曲线。通过模拟,发现油气热着火过程存在3个阶段,分别为加热初始阶段、加热中间阶段和热着火发生阶段。不同阶段存在的主要原因是化学反应和流动的主导作用不同。
  • 图  1  方程组的分离式解法示意图

    Figure  1.  Schematic diagram for segregated solving equations

    图  2  实验台架内选点的位置

    Figure  2.  Selected positions in experimental bench

    图  3  热着火发生时热壁表面的临界温度

    Figure  3.  Critical temperature of the hot wall surface when thermal ignition occurs

    图  4  油气热着火温度场模拟图

    Figure  4.  Simulated temperature-field diagrams of gasoline-air thermal ignition

    图  5  7个空间点的温度变化曲线

    Figure  5.  Temperature curves of 7 spatial points

    图  6  热着火压力等值线

    Figure  6.  Pressure contours of thermal ignition

    图  7  7个点的压力变化曲线

    Figure  7.  Pressure variation curves at 7 spatial points

    图  8  1号位置反应物的质量分数变化曲线

    Figure  8.  Mass faction curve at the first spatial point

    图  9  不同位置C4H10的质量分数变化曲线

    Figure  9.  Mass faction curves of C4H10 at different positions

    图  10  不同位置OH的质量分数变化曲线

    Figure  10.  Mass faction curves of OH at different positions

    图  11  不同位置CO的质量分数变化曲线

    Figure  11.  Mass faction curves of CO at different positions

    图  12  不同位置H2O的质量分数变化曲线

    Figure  12.  Mass faction curves of H2O at different positions

    图  13  不同位置O2的质量分数变化曲线

    Figure  13.  Mass faction curves of O2 at different positions

    图  14  初始阶段横轴方向火焰速度变化曲线

    Figure  14.  Velocity of the flame in x direction at initial stage

    图  15  发生阶段横轴方向火焰速度变化曲线

    Figure  15.  Velocity of the flame in x direction at occurrence stage

    图  16  初始阶段纵轴方向火焰速度变化曲线

    Figure  16.  Velocity of the flame in y direction at initial stage

    图  17  发生阶段纵轴方向火焰速度变化曲线

    Figure  17.  Velocity of the flame in y direction at occurrence stage

    图  18  发生阶段火焰湍流速度曲线

    Figure  18.  Turbulent velocity of the flame at occurrence stage

    表  1  初始组分

    Table  1.   Initial components

    初始组分质量分数摩尔分数摩尔浓度/(mol·cm-3)
    CH40.010.018 27.45×10-7
    C2H60.010.009 73.98×10-7
    C3H80.010.006 62.71×10-7
    C4H100.010.005 02.05×10-7
    n-C7H160.010.002 91.19×10-7
    i-C8H180.010.002 61.04×10-7
    O20.210.192 17.85×10-6
    N20.730.763 03.12×10-5
    下载: 导出CSV

    表  2  热着火过程的6个时间点的基本参数

    Table  2.   Basic parameters of the thermal ignition process at 6 time points

    时间点t/msnTmax/Kpmax/Pavx, max/(m·s-1)vy, max/(m·s-1)I/%
    No.1100.0910 000452.1210 484.34.934.76280.551
    No.2413.0663 000581.7892 218.866.8952.592 435.931
    No.3413.5364 800844.91127 912.0109.5155.402 812.672
    No.4413.5380 000872.86144 851.9100.2042.662 266.638
    No.5413.53100 000914.99179 834.699.0140.382 195.186
    No.6414.06587 2001271.99381 857.6306.55142.4414 418.030
    下载: 导出CSV
  • [1] MEHL M, PITZ W J, WESTBROOK C K, et al. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions[J]. Proceedings of the Combustion Institute, 2011, 33(1):193-200. doi: 10.1016/j.proci.2010.05.027
    [2] BATTIN-LECLERC F. Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates[J]. Progress in Energy and Combustion Science, 2008, 34(4):440-498. doi: 10.1016/j.pecs.2007.10.002
    [3] CANCINO L R, FIKRI M, OLIVEIRA A A M, et al. Ignition delay times of ethanol-containing multi-component gasoline surrogates:Shock-tube experiments and detailed modeling[J]. Fuel, 2011, 90(3):1238-1244. doi: 10.1016/j.fuel.2010.11.003
    [4] DU Yang, ZHANG Peili, OU Yihong. Effects of humidity, temperature and slow oxidation reactions on the occurrence of gasoline-air explosions[J].Journal of Fire Protection Engineering, 2013, 23(3):226-238. doi: 10.1177/1042391513486464
    [5] 欧益宏, 杜扬, 蒋新生, 等.地下坑道瓦斯热着火实验研究[J].煤矿安全, 2011, 42(2)4-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mkaq201102002

    OU Yihong, DU Yang, JIANG Xinsheng, et al. Experiment research on thermal ignition of gas in underground tunnel[J]. Safety in Coal Mines, 2011, 42(2):4-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mkaq201102002
    [6] 杜扬, 欧益宏, 吴英, 等.热壁条件下油气的热着火现象[J].爆炸与冲击, 2009, 29(3):268-274. doi: 10.11883/1001-1455(2009)03-0268-07

    DU Yang, OU Yihong, WU Ying, et al. Thermal ignition phenomena of gasoline-air mixture induced by hot wall[J]. Explosion and Shock Waves, 2009, 29(3):268-274. doi: 10.11883/1001-1455(2009)03-0268-07
    [7] OU Yihong, DU Yang, JIANG Xinsheng, et al. Study on the thermal ignition of gasoline-air mixture in underground oil depots based on experiment and numerical simulation[J]. Journal of Thermal Science, 2010, 19(2):173-181. doi: 10.1007/s11630-010-0173-7
    [8] BI Mingshu, DONG Chengjie, ZHOU Yihui. Numerical simulation of premixed methane air deflagration in large L/D closed pipes[J]. Applied Thermal Engineering, 2012, 40:337-342. doi: 10.1016/j.applthermaleng.2012.01.065
    [9] WANG Cheng, HAN Wenhu, NING Jianguo, et al. High resolution numerical simulation of methane explosion in bend ducts[J]. Safety Science, 2012, 50(4):709-717. doi: 10.1016/j.ssci.2011.08.047
    [10] SKJOLD T, ARNTZEN B J, HANSEN O R, et al. Simulation of dust explosions in complex geometries with experimental input from standardized tests[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3):210-217. https://www.sciencedirect.com/science/article/pii/S0950423005000689
    [11] SARLI V, BENEDETTO A, RUSSO G. Using Large Eddy Simulation for understanding vented gas explosions in the presence of obstacles[J]. Journal of Hazardous Materials, 2009, 169(1/2/3):435-442. https://www.researchgate.net/publication/24396517_Using_Large_Eddy_Simulation_for_understanding_vented_gas_explosions_in_the_presence_of_obstacles
    [12] 吴松林, 杜扬, 李国庆, 等.受限空间油气热着火的简化机理与分析[J].燃烧科学与技术, 2015, 21(1):20-27. http://www.cqvip.com/QK/98306X/201501/663795215.html

    WU Songlin, DU Yang, LI Guoqing, et al. Reduced mechanism and analysis for thermal ignition of gasoline-air mixture in confined space[J]. Journal of Combustion Science and Technology, 2015, 21(1):20-27. http://www.cqvip.com/QK/98306X/201501/663795215.html
    [13] WU Songlin. Research on catastrophe phenomenon in the occurrence and the development of gasoline-air explosion on the local heat resource in confined space[D]. Chongqing, China: Logistical Engineering University, 2015: 13-40.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  4781
  • HTML全文浏览量:  1826
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-25
  • 修回日期:  2017-04-07
  • 刊出日期:  2018-05-25

目录

    /

    返回文章
    返回