主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竖直圆管内超临界压力煤油传热特性实验研究

胡江玉 周进 潘余 王辉 王宁 任春雷

胡江玉, 周进, 潘余, 王辉, 王宁, 任春雷. 竖直圆管内超临界压力煤油传热特性实验研究[J]. 气体物理, 2016, 1(4): 51-57.
引用本文: 胡江玉, 周进, 潘余, 王辉, 王宁, 任春雷. 竖直圆管内超临界压力煤油传热特性实验研究[J]. 气体物理, 2016, 1(4): 51-57.
HU Jiang-yu, ZHOU Jin, PAN Yu, WANG Hui, WANG Ning, REN Chun-lei. Experimental Investigation on Heat Transfer of Kerosene Flowing in a Vertical Tube at Supercritical Pressure[J]. PHYSICS OF GASES, 2016, 1(4): 51-57.
Citation: HU Jiang-yu, ZHOU Jin, PAN Yu, WANG Hui, WANG Ning, REN Chun-lei. Experimental Investigation on Heat Transfer of Kerosene Flowing in a Vertical Tube at Supercritical Pressure[J]. PHYSICS OF GASES, 2016, 1(4): 51-57.

竖直圆管内超临界压力煤油传热特性实验研究

基金项目: 

国家自然科学基金 11372348

详细信息
    作者简介:

    胡江玉(1991-)男, 湖北监利, 硕士研究生, 研究方向为超燃冲压发动机热防护.通信地址:国防科技大学航天科学与工程学院(410073). E-mail: hujiangyuqw@sina.com

  • 中图分类号: O354.7

Experimental Investigation on Heat Transfer of Kerosene Flowing in a Vertical Tube at Supercritical Pressure

  • 摘要: 在压力2.5~4 MPa, 质量流量0.7~1.7 g/s, 热流密度0.06~1 MW/m2的实验条件下, 对煤油在内径1 mm, 长度300 mm竖直上升圆管内的流动与传热特性开展了实验研究, 并分析了传热系数随局部油温的变化及不同实验参数对传热的影响.结果表明, 超临界压力下煤油传热主要由自身物性和流动状态决定.超临界压力煤油传热过程大致可以分为3个区域:正常传热区传热强化区和传热恶化区.传热强化主要是湍流掺混增强和近壁面流体在拟临界温度附近物性剧烈变化的综合作用; 传热恶化则是因为壁温及近壁面流体温度远高于拟临界温度, 在近壁面发生了类似于亚临界状态下的“拟膜态沸腾”.

     

  • 图  1  实验系统示意图

    Figure  1.  Schematic diagram of the experimental system

    图  2  试验段及壁温测量示意图

    Figure  2.  Schematic diagram of the test section and temperature measurement

    图  3  不同质量流量下传热系数随主流油温的变化(3 MPa, 0.5 MW/m2)

    Figure  3.  Heat transfer coefficients of the bulk temperatures at different mass flow rates(3 MPa, 0.5 MW/m2)

    图  4  不同热流密度下传热系数随主流油温的变化(1.2 g/s, 3 MPa)

    Figure  4.  Heat transfer coefficients of the bulk temperatures at different heat fluxes(1.2 g/s, 3 MPa)

    图  5  不同压力下传热系数随主流油温的变化(1.2 g/s, 0.5 MW/m2)

    Figure  5.  Heat transfer coefficients of the bulk temperatures at different pressures(1.2 g/s, 0.5 MW/m2)

    图  6  不同压力下煤油物性随温度的变化

    Figure  6.  Thermophysical properties of kerosene at different pressures

  • [1] Jiang D F, Xu H, Deng B, et al. Effect of oxygenated treatment on corrosion of the whole steam-water system in supercritical power plant[J]. Applied Thermal Engineering, 2016, 93: 1248-1253. doi: 10.1016/j.applthermaleng.2015.10.098
    [2] Yoshida S, Mori H. Heat transfer to supercritical pressure fluids flowing in tubes[A]. //Proceedings of the 1st International Symposium on Supercritical Water-Cooled Reactor Design and Technology[C]. Tokyo, 2000.
    [3] Deepak D, Jeenu R. Endothermic fuels for supersonic ramjet[J]. Journal of the Indian Chemical Society, 2003, 80 (5): 535-543. https://www.researchgate.net/publication/286667608_Endothermic_fuels_for_supersonic_ramjet
    [4] Pioro I L, Duffey R B. Experimental heat transfer in supercritical water flowing inside channels (survey)[J]. Nuclear Engineering and Design, 2005, 235 (22): 2407-2430. doi: 10.1016/j.nucengdes.2005.05.034
    [5] Zhang G, Zhang H, Gu H Y, et al. Experimental and numerical investigation of turbulent convective heat transfer deterioration of supercritical water in vertical tube[J]. Nuclear Engineering and Design, 2012, 248: 226-237. doi: 10.1016/j.nucengdes.2012.03.026
    [6] Jackson J D. Consideration of the heat transfer properties of supercritical pressure water in connection with the cooling of advanced nuclear reactors[A]. // Proceedings of the 13th Pacific Basin Nuclear Conference[C]. Shenzhen, 2002.
    [7] Petukhov B S, Krasnoschekov E A, Protopopov V S. An investigation of heat transfer to fluids flowing in pipes under supercritical conditions[A]. //The 1961 International Heat Transfer Conference[C]. Boulder, 1961.
    [8] Wang N, Pan Y, Zhou J. Research status of active cooling of endothermic hydrocarbon fueled scramjet engine[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, 227 (11): 1780-1794. doi: 10.1177/0954410012463642
    [9] Wang N, Zhou J, Pan Y, et al. A parametric experimental study on the heat transfer characteristics of supercritical kerosene in active cooling channels of scramjets[J]. Advanced Materials Research, 2013, 774/776: 252-257. doi: 10.4028/www.scientific.net/AMR.774-776
    [10] Wei L, Dan H, Guo Q X, et al. Heat transfer to aviation kerosene flowing upward in smooth tubes at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2015, 85: 1084-1094. doi: 10.1016/j.ijheatmasstransfer.2015.01.079
    [11] Fu Y C, Tao Z, Xu G Q, et al. Experimental study of flow distribution for aviation kerosene in parallel helical tubes under supercritical pressure[J]. Applied Thermal Engineering, 2015, 90: 102-109. doi: 10.1016/j.applthermaleng.2015.06.082
    [12] Zhang C B, Xu Guo Q, Gao L, et al. Experimental investigation on heat transfer of a specific fuel (RP-3) flows through downward tubes at supercritical pressure[J]. Journal of Supercritical Fluids, 2012, 72: 90-99. doi: 10.1016/j.supflu.2012.07.011
    [13] Liu B, Zhu Y H, Yan J J, et al. Experimental investigation of convection heat transfer of n-decane at supercritical pressures in small vertical tubes[J]. International Journal of Heat and Mass Transfer, 2015, 91: 734-746. doi: 10.1016/j.ijheatmasstransfer.2015.07.006
    [14] Zhu J Q, Tao Z, Deng H W, et al. Numerical investigation of heat transfer characteristics and flow resistance of kerosene RP-3 under supercritical pressure[J]. International Journal of Heat and Mass Transfer, 2015, 91: 330-341. doi: 10.1016/j.ijheatmasstransfer.2015.07.118
    [15] Dang G X, Zhong F Q, Zhang Y J, et al. Numerical study of heat transfer deterioration of turbulent supercritical kerosene flow in heated circular tube[J]. International Journal of Heat and Mass Transfer, 2015, 85: 1003-1011. doi: 10.1016/j.ijheatmasstransfer.2015.02.052
    [16] Zhou W X, Bao W, Qin J, et al. Deterioration in heat transfer of endothermal hydrocarbon fuel[J]. Journal of Thermal Science, 2011, 20(2): 173-180. doi: 10.1007/s11630-011-0454-9
    [17] Hua Y X, Wang Y Z, Meng H. A numerical study of supercritical forced convective heat transfer of n-heptane inside a horizontal miniature tube[J]. Journal of Supercritical Fluids, 2010, 52 : 36-46. doi: 10.1016/j.supflu.2009.12.003
    [18] Feng Y, Qin J, Zhang S L, et al. Modeling and analysis of heat and mass transfers of supercritical hydrocarbon fuel with pyrolysis in mini-channel[J]. International Journal of Heat and Mass Transfer, 2015, 91: 520-531. doi: 10.1016/j.ijheatmasstransfer.2015.07.095
    [19] Deng H W, Zhu K, Xu G Q, et al. Isobaric specific heat capacity measurement for kerosene RP-3 in the near-critical and supercritical regions[J]. Journal of Chemical and Engineering Data, 2012, 57, 263-268. doi: 10.1021/je200523a
    [20] Deng H W, Zhang C B, Xu G Q, et al. Viscosity measurements of endothermic hydrocarbon fuel from (298 to 788) K under supercritical pressure conditions[J]. Journal of Chemical and Engineering Data, 2012, 57, 358-365. doi: 10.1021/je200901y
    [21] Deng H W, Zhang C B, Xu G Q, et al. Density measurements of endothermic hydrocarbon fuel at sub-and supercritical conditions[J]. Journal of Chemical and Engineering Data, 2011, 56: 2980-2986. doi: 10.1021/je200258g
    [22] Huber M L. NIST thermophysical properties of hydrocarbon mixtures database (SUPERTRAPP)version 3.2 user′ guide[DB/OL]. (2007)[2016-05-06] https: //www.researchgate.net/publication/237625399_NIST_Thermophysical_Properties_of_Hydrocarbon_Mixtures_Database.
    [23] Ackerman J W. Pseudoboiling heat transfer to supercritical pressure water in smooth and ribbed tubes[J]. Journal of Heat Transfer, 1970, 92 (3): 490-498. doi: 10.1115/1.3449698
    [24] Lee R A, Haller K H. Supercritical water heat transfer developments and applications[A]. // Proceedings of the 5th International Heat Transfer Conference[C]. Tokyo, 1974: 335-339.
  • 加载中
图(6)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  9
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-06
  • 修回日期:  2016-05-22
  • 发布日期:  2016-07-20
  • 刊出日期:  2016-07-01

目录

    /

    返回文章
    返回