主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流动/运动松耦合与紧耦合计算方法及稳定性分析

马戎 常兴华 赫新 张来平

马戎, 常兴华, 赫新, 张来平. 流动/运动松耦合与紧耦合计算方法及稳定性分析[J]. 气体物理, 2016, 1(6): 36-49.
引用本文: 马戎, 常兴华, 赫新, 张来平. 流动/运动松耦合与紧耦合计算方法及稳定性分析[J]. 气体物理, 2016, 1(6): 36-49.
MA Rong, CHANG Xing-hua, HE Xin, ZHANG Lai-ping. Loose and Strong Coupling Methods for Flow/Kinematics Coupled Simulations and Stability Analysis[J]. PHYSICS OF GASES, 2016, 1(6): 36-49.
Citation: MA Rong, CHANG Xing-hua, HE Xin, ZHANG Lai-ping. Loose and Strong Coupling Methods for Flow/Kinematics Coupled Simulations and Stability Analysis[J]. PHYSICS OF GASES, 2016, 1(6): 36-49.

流动/运动松耦合与紧耦合计算方法及稳定性分析

基金项目: 

国家自然科学基金 11532016

国家自然科学基金 11202227

详细信息
    作者简介:

    马戎(1990-)男, 福建宁化, 硕士, 中国空气动力研究与发展中心计算空气动力研究所研究实习员, 研究方向为非定常数值模拟动态混合网格生成以及数值虚拟飞行.通信地址:四川省绵阳市二环路南段6号13信箱9分箱(621000), E-mail:1026445397@qq.com

    张来平(1968-)男, 湖北监利, 博士, 中国空气动力研究与发展中心计算空气动力研究所研究员博士生导师, 研究方向为复杂外形混合网格生成技术非定常数值模拟方法非结构网格高精度格式数值虚拟飞行大型CFD软件开发及应用等.通信地址:四川省绵阳市二环路南段6号13信箱9分箱(621000), E-mail:zhanglp_cardc@126.com

  • 中图分类号: O355

Loose and Strong Coupling Methods for Flow/Kinematics Coupled Simulations and Stability Analysis

  • 摘要: 为了更加精确地模拟流动/运动耦合问题, 建立了耦合动态混合网格生成非定常流场计算和六自由度运动方程求解的一体化计算方法, 并在统一框架内同时实现了松耦合与紧耦合方法.通过圆柱涡致自激振荡(vortex induced vibration, VIV)的模拟, 对不同时间精度的松耦合和紧耦合算法的优劣及适用范围进行了评估和分析; 通过引入附加质量的概念, 对耦合算法的稳定性进行了理论分析.研究表明:在流体的密度与物体的密度接近时, 松耦合方法是不稳定的, 必须采用紧耦合方法.最后利用耦合算法对二维鱼体的自主游动和钝锥三自由度自由飞过程进行了数值模拟, 证实了理论分析的结论.

     

  • 图  1  一体化耦合计算示意图

    Figure  1.  Procedure of coupling simulation

    图  2  松耦合数据交互示意图

    Figure  2.  Sketch of data exchanges between CFD and RBD in loose coupling computation

    图  3  紧耦合数据交互示意图

    Figure  3.  Sketch of data exchanges between CFD and RBD in fully implicit coupling computation

    图  4  紧耦合计算中子迭代流程

    Figure  4.  Sub-iteration procedure of implicit coupling solver

    图  5  圆柱涡致自激振荡系统示意图

    Figure  5.  Sketch of 2DOFs VIV model of oscillating cylinder

    图  6  4种CFD/RBD方法lg(2ymax)随Δt的变化

    Figure  6.  lg(2ymax) vs. time steps (computed by four types of second-order CFD/RBD coupling algorithms)

    图  7  典型位移变化规律

    Figure  7.  Displacements in the x and y directions

    图  8  不同耦合方式计算的lg(2ymax) vs. lg(2π2St2ζm/ρr2)

    Figure  8.  Displacements in the y-direction vs. the reduced damping coefficient (ζ) with different coupling algorithms

    图  9  μs=4/π时松耦合方法计算得到的位移变化曲线

    Figure  9.  Displacements in the x and y directions by loose coupling algorithm when μs=4/π

    图  10  μs=1时松耦合方法计算的位移变化曲线

    Figure  10.  Displacements in the x and y directions by loose coupling algorithm when μs=1

    图  11  S型启动过程中的动态混合网格

    Figure  11.  Hybrid dynamic meshes during the S-type starting process

    图  12  鱼体质心在水平方向的位移及速度变化情况

    Figure  12.  Translations and velocities in horizontal direction

    图  13  鱼体铅垂和俯仰方向的位移和(角)速度

    Figure  13.  Kinematics variables in the case of 3DOFs

    图  14  固定质心方式阻力随摆动波速的变化情况

    Figure  14.  Drag vs. wave speed when the center of gravity is fixed

    图  15  鱼体启动过程中若干典型位置流场的涡量云图

    Figure  15.  Vorticity contours during the S-type starting process

    图  16  钝锥外形尺寸示意图

    Figure  16.  Configuration of blunted cone model

    图  17  位移(角度)变化情况及轨迹

    Figure  17.  3DOFs parameters vs. time and pathway of the cone

    图  18  典型状态时的纹影图和压力云图

    Figure  18.  Schlierens and pressure contours of typical states

    表  1  统一形式飞行力学离散控制方程中各种格式的系数

    Table  1.   Parameters in different coupling algorithms for the solution of flight dynamics equations

    temporal scheme order a b c d e classification
    1st-forward-difference formula (FDF1) 1 1 0 0 1 0 loose coupling
    1st-backward-difference formula (BDF1) 1 1 0 1 0 0 strong coupling
    2nd-forward-difference formula (FDF2) 2 1 0 0 3/2 -1/2 loose coupling
    2nd-backward-difference formula (BDF2) 2 4/3 -1/3 2/3 0 0 strong coupling
    Crank-Nicolson (C-N) 2 1 0 1/2 1/2 0 strong coupling
    3rd-Adams-Moulton (A-M3) 3 1 0 5/12 8/12 -1/12 strong coupling
    下载: 导出CSV

    表  2  不同Δt下各种耦合方式计算得到的lg(2ymax)

    Table  2.   lg(2ymax) computed by different coupling algorithms with different time steps

    Δt N-S temporal precision 1st-forward-difference formula 1st-backward-difference formula 2nd-forward-difference formula 2nd-backward-difference formula Crank-Nicolson 3rd-Adams-Moulton
    0.20 1st order diverged -1.2097 -0.9841 -0.9353 -0.9496 -0.9569
    2nd order diverged -0.9293 -0.5616 -0.6369 -0.6070 -0.5994
    0.15 1st order diverged -1.0650 -0.8116 -0.7980 -0.8007 -0.8023
    2nd order -0.0292 -0.8857 -0.6001 -0.6483 -0.6305 -0.6257
    0.10 1st order -0.3423 -0.9116 -0.6970 -0.7020 -0.6996 -0.6993
    2nd order -0.3252 -0.8277 -0.6319 -0.6538 -0.6460 -0.6437
    0.05 1st order -0.5118 -0.7682 -0.6540 -0.6576 -0.6564 -0.6560
    2nd order -0.5222 -0.7522 -0.6496 -0.6549 -0.6531 -0.6525
    0.02 1st order -0.6020 -0.6964 -0.6512 -0.6519 -0.6517 -0.6516
    2nd order -0.6080 -0.6978 -0.6548 -0.6556 -0.6554 -0.6553
    0.01 1st order -0.6296 -0.6755 -0.6531 -0.6532 -0.6532 -0.6532
    2nd order -0.6328 -0.6775 -0.6556 -0.6558 -0.6558 -0.6558
    下载: 导出CSV

    表  3  鱼体运动及质量参数

    Table  3.   Parameters of 2D fish swimming

    fish body length i.e. reference length l wave length λ wave velocity c mass of 2D fish m
    0.1 m 0.1 m 0.1 m/s 1.0 kg/m
    下载: 导出CSV

    表  4  3种方法得到的鱼体巡游速度

    Table  4.   Cruising speeds calculated by three different methods

    methods cruising speed/ wave speeds
    fixed mass center 0.66
    free swimming: 1DOF 0.66
    free swimming: 3DOFs 0.57
    下载: 导出CSV

    表  5  钝锥质量特性

    Table  5.   Mass characteristics of the blunt cone

    mass m inertia moment of x-axis Ixx inertia moment of y-axis Iyy inertia moment of z-axis Izz
    246.9 g 335 g·cm2 335 g·cm2 580.89 g·cm2
    下载: 导出CSV

    表  6  钝锥自由飞过程计算条件

    Table  6.   Flow parameters of the blunt cone free-flight

    Mach number M Reynolds number Re reference length Lref reference temperature T reference pressure p reference density ρ reference velocity U reference time tref
    5 8.45×106 1 m 69.17 K 942.86Pa 0.04714 kg/m3 836.645 m/s Lref / U = 1.195×10-3 s
    下载: 导出CSV
  • [1] Dean J P, Clifton J D, Bodkin D J, et al.High resolution CFD simulations of maneuvering aircraft using the CREATE/AV-Kestrel solver[R].AIAA 2011-1109, 2011.
    [2] Allan M R, Badcock K J, Richards B E.CFD based simulation of longitudinal flight mechanics with control[R].AIAA 2005-0046, 2005.
    [3] 赵忠良, 吴军强, 李浩, 等.高机动导弹气动/运动/控制耦合的风洞虚拟飞行试验技术[J].空气动力学学报, 2016, 34(1):14-19. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201601005.htm

    Zhao Z L, Wu J Q, Li H, et al.Wind tunnel based virtual flight testing of aerodyanmics, flight dynamics and flight control for high maneuver missle[J].ACTA Aerodynamica Sinica, 2016, 34(1):14-19(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201601005.htm
    [4] Alonso J J, Jameson A.Fully-implicit time-marching aeroelastic solutions[R].AIAA 1994-0056, 1994.
    [5] Kamakoti R, Shyy W.Fluid-structure interaction for aeroelastic applications[J].Progress in Aerospace Sciences, 2004, 40(8):535-558. doi: 10.1016/j.paerosci.2005.01.001
    [6] 陈龙, 伍贻兆, 夏健.CFD/CSD紧耦合及新型动网格方法在气动弹性模拟中的应用[J].计算力学学报, 2011, 28(5):807-812. doi: 10.7511/jslx201105027

    Chen L, Wu Y Z, Xia J.CFD/CSD closely coupled and new dynamic grid method in application of aeroelastic simulation[J].Chinese Journal of Computational mechanics, 2011, 28(5):807-812(in Chinese). doi: 10.7511/jslx201105027
    [7] Farhat C, Van Der Zee K G, Geuzaine P.Probably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity[J].Computer Methods in Applied Mechanics and Engineering, 2006, 195(17/18):1973-2001.
    [8] Etienne S, Pelletier D, Garon A.A monolithic formulation for steady-state fluid-structure interaction problems[R].AIAA 2004-239, 2004.
    [9] Etienne S, Pelletier D, Garon A.A monolithic formulation for unsteady fluid-structure interactions[R].AIAA 2006-694, 2006.
    [10] Tan B H, Lucey A D, Howell R M.Aero-/hydro-elastic stability of flexible panels:prediction and control using localized spring support[J].Journal of Sound and Vibration, 2013, 332(26):7033-7054. doi: 10.1016/j.jsv.2013.08.012
    [11] S9ding H.How to integrate free motions of solids in fluids[A].//Fourth Numerical Towing Tank Symposium[C].Hamburg, 2001.
    [12] Leroyer A, Visonneau M.Numerical methods for RANS simulations of a self-propelled fish-like body[J].Journal of Fluids and Structures, 2005, 20(7):975-991. doi: 10.1016/j.jfluidstructs.2005.05.007
    [13] Liu G, Yu Y L, Tong B G.Flow control by means of a traveling curvature wave in fishlike escape responses[J].Physical Review E:Statistical Nonlinear and Soft Matter Physics, 2011, 84(2):2269-2278.
    [14] Strganac T W, Mook D T.Numerical model of unsteady subsonic aeroelastic behavior[J].AIAA Journal, 1990, 28(5):903-909. doi: 10.2514/3.25137
    [15] He X, He X Y, He L, et al.HyperF LOW:a structured/unstructured hybrid integrated computational environment for multi-purpose fluid simulation[J].Procedia Engineering, 2015, 126:645-649. doi: 10.1016/j.proeng.2015.11.254
    [16] 赫新, 赵钟, 马戎, 等.HyperF LOW亚跨声速流动验证[J].空气动力学学报, 2016, 34(2):267-275.

    He X, Zhao Z, Ma R, et al.Validation of HyperF LOW in subsonic and transonic flow[J].ACTA Aerodynamica Sinica, 2016, 34(2):267-275(in Chinese).
    [17] Batina J T.Unsteady Euler airfoil solutions using unstructured dynamic meshes[J].AIAA Journal, 1990, 28(8):1381-1388. doi: 10.2514/3.25229
    [18] Liu X Q, Qin N, Xia H.Fast dynamic grid deformation based on Delaunay graph mapping[J].Journal of Computational Physics, 2006, 211(2):405-423. doi: 10.1016/j.jcp.2005.05.025
    [19] Rendall T C, Allen C B.Efficient mesh motion using radial basis functions with data reduction algorithms[J].Journal of Computational Physics, 2009, 228(17):6231-6249. doi: 10.1016/j.jcp.2009.05.013
    [20] 张来平, 邓小刚, 张涵信.动网格生成技术及非定常计算方法进展综述[J].力学进展, 2010, 40(4):424-447. doi: 10.6052/1000-0992-2010-4-J2009-123

    Zhang L P, Deng X G, Zhang H X.Reviews of moving grid generation techniques and numerical methods for unsteady flow[J].Advances in Mechanics, 2010, 40(4):424-447(in Chinese). doi: 10.6052/1000-0992-2010-4-J2009-123
    [21] 张来平, 赫新, 常兴华, 等.复杂外形静动态混合网格生成技术研究新进展[J].气体物理, 2016, 1(1):42-61. http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=6fdf5bfa-0c38-406f-8417-a3a5d4453b97

    Zhang L P, He X, Chang X H, et al.Recent progress of static and dynamic hybrid grid generation techniques over complex geometries[J].Physics of Gases, 2016, 1(1):42-61(in Chinese). http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=6fdf5bfa-0c38-406f-8417-a3a5d4453b97
    [22] Roe P L.Approximate Riemann solvers, parameter vectors, and difference schemes[J].Journal of Computational Physics, 1981, 43(2):357-372. doi: 10.1016/0021-9991(81)90128-5
    [23] Venkatakrishnan V.On the accuracy of limiters and convergence to steady state solutions[R].AIAA 1993-0880, 1993.
    [24] Barth T J, Jespersen D C.The design and application of upwind schemes on unstructured meshes[R].AIAA1989-0366, 1989.
    [25] Chang X H, Ma R, Zhang L P, et al.Further study on the geometric conservation law for finite volume method on dynamic unstructured mesh[J].Computers & Fluids, 2015, 120:98-110. https://www.researchgate.net/profile/Xinghua_Chang/publication/282598635_Further_study_on_the_geometric_conservation_law_for_finite_volume_method_on_dynamic_unstructured_mesh/links/568e400908aeaa1481af9560.pdf?origin=publication_detail
    [26] Spalart P R, Allmaras S R.A one equation turbulence model for aerodynamic flows[R].AIAA 1992-0439, 1992.
    [27] Menter F R.Zonal two equation turbulence models for aerodynamic flows[R].AIAA 1993-2906, 1993.
    [28] Jameson A.Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings[R].AIAA 1991-1596, 1991.
    [29] Chen R F, Wang Z J.Fast block lower-upper symmetric Gauss-Seidel scheme for arbitrary grids[J].AIAA Journal, 2000, 38(12):2238-2245. doi: 10.2514/2.914
    [30] Zhang L P, Wang Z J.A block LU-SGS implicit dual time-stepping algorithm for hybrid dynamic meshes[J].Computers & Fluids, 2004, 33(7):891-916.
    [31] Zhang L P, Chang X H, Duan X P, et al.Applications of dynamic hybrid grid method for three-dimensional moving/deforming boundary problems[J].Computers & Fluids, 2012, 62:45-63. https://www.researchgate.net/publication/256918910_Applications_of_dynamic_hybrid_grid_method_for_three-dimensional_movingdeforming_boundary_problems
    [32] Blackburn H M, Karniadakis G E.Two and three-dimensional simulations of vortex-induced vibration of a circular cylinder[A].//Proceedings of the International Society of Offshore and Polar Engineers(ISOPE)93 Conference[C].Singapore, 1993, 3:715-720.
    [33] Morton S A, Melville R B, Visbal M R.Accuracy and coupling issues of aeroelastic Navier-Stokes solutions on deforming meshes[R].AIAA 1997-1085, 1997.
    [34] Zhang L P, Chang X H, Duan X P, et al.A block LU-SGS implicit unsteady incompressible flow solver on hybrid dynamic grids for 2D external bio-fluid simulations[J].Computers & fluids, 2009, 38(2):290-308. https://www.researchgate.net/publication/2822207_Unsteady_Flow_Structure_Interaction_for_Incompressible_Flows_using_Hybrid_Grids
    [35] Chang X H, Zhang L P, He X.Numerical study of the thunniform mode of fish swimming with different Reynolds number and caudal fin shape[J].Computers & fluids, 2012, 68:54-70. https://www.researchgate.net/publication/256918922_Numerical_study_of_the_thunniform_mode_of_fish_swimming_with_different_Reynolds_number_and_caudal_fin_shape
  • 加载中
图(18) / 表(6)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  41
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-21
  • 修回日期:  2016-08-03
  • 发布日期:  2016-11-20
  • 刊出日期:  2016-11-01

目录

    /

    返回文章
    返回