主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速椭圆锥边界层横流转捩特性大涡模拟

朱志斌 冯峰 沈清

朱志斌, 冯峰, 沈清. 高超声速椭圆锥边界层横流转捩特性大涡模拟[J]. 气体物理, 2022, 7(3): 60-72. doi: 10.19527/j.cnki.2096-1642.0950
引用本文: 朱志斌, 冯峰, 沈清. 高超声速椭圆锥边界层横流转捩特性大涡模拟[J]. 气体物理, 2022, 7(3): 60-72. doi: 10.19527/j.cnki.2096-1642.0950
ZHU Zhi-bin, FENG Feng, SHEN Qing. Large Eddy Simulation of Crossflow Transition Characteristics in Hypersonic Elliptic Cone Boundary Layer[J]. PHYSICS OF GASES, 2022, 7(3): 60-72. doi: 10.19527/j.cnki.2096-1642.0950
Citation: ZHU Zhi-bin, FENG Feng, SHEN Qing. Large Eddy Simulation of Crossflow Transition Characteristics in Hypersonic Elliptic Cone Boundary Layer[J]. PHYSICS OF GASES, 2022, 7(3): 60-72. doi: 10.19527/j.cnki.2096-1642.0950

高超声速椭圆锥边界层横流转捩特性大涡模拟

doi: 10.19527/j.cnki.2096-1642.0950
详细信息
    作者简介:

    朱志斌(1987-) 男, 博士, 高工, 主要研究可压缩湍流转捩数值模拟. E-mail: zhuzhb@sina.cn

  • 中图分类号: V211

Large Eddy Simulation of Crossflow Transition Characteristics in Hypersonic Elliptic Cone Boundary Layer

  • 摘要: 横流效应显著影响高超声速飞行器的三维边界层转捩过程, 深化对该流动机制的认识有助于提升和改善飞行器气动性能及热力学环境. 针对HIFiRE5椭圆锥绕流问题, 采用大涡模拟方法计算分析了超声速边界层横流转捩特性, 并揭示其中的流动机理. 参考HIFiRE5风洞模型试验条件, 数值模拟中椭圆锥来流入口处施加人工速度扰动以激发边界层内不稳定扰动波, 进而预测了高超声速边界层流动横流失稳、转捩过程等基本流动特征, 并基于转捩热流分布形态对比, 获得了与试验数据基本吻合的计算结果. 研究发现, 椭圆锥中心线流动汇聚形成的流向涡结构非常容易失稳, 另外在中心线及侧缘之间的中部区域存在较强的横流不稳定性, 两种机制共同作用影响边界层转捩过程. 此外, 分析了来流扰动幅值对边界层横流失稳转捩的影响, 并发现静来流条件下, 横流区域出现两组独立的定常横流涡结构, 而强噪声来流条件下, 中心线主涡和中部横流涡均发生失稳转捩, 且在椭圆锥表面形成多峰状的转捩阵面. 最后, 深入分析流场的压力脉动动力学特性, 揭示了三维边界层发生失稳转捩的非线性演化机制.

     

  • 图  1  椭圆锥试验模型[6-7]

    Figure  1.  Experimental model of the elliptic cone[6-7]

    图  2  计算网格示意图

    Figure  2.  Schematic of computational grids

    图  3  数值结果与风洞试验热流数据对比

    Figure  3.  Heat-flux comparison between numerical results and wind tunnel experimental data

    图  4  无扰动流场

    Figure  4.  Flowfield without inlet disturbance

    图  5  x=200 mm处流向截面流场

    Figure  5.  Flowfield of streamwise section at x=200 mm

    图  6  中心线附近速度剖面

    Figure  6.  Velocity profile near the centerline

    图  7  中心线外侧速度剖面

    Figure  7.  Velocity profile outside the centerline

    图  8  不同扰动幅值下瞬态涡系结构(Q2=0.01)

    Figure  8.  Instantaneous vortex structures under different disturbance amplitudes (Q2=0.01)

    图  9  不同扰动幅值下瞬态、时均热流分布

    Figure  9.  Instantaneous and time-averaged heat flux distributions under different disturbance amplitudes

    图  10  流向截面瞬态密度

    Figure  10.  Instantaneous density at streamwise sections

    图  11  展向截面瞬态密度

    Figure  11.  Instantaneous density at spanwise sections

    图  12  不同扰动幅值密度脉动均方根、湍动能对比

    Figure  12.  Comparison of root mean square of density fluctuation and turbulent kinetic energy between different disturbance amplitudes

    图  13  探测点位置示意图

    Figure  13.  Schematic of probe positions

    图  14  探测点压强脉动频谱曲线

    Figure  14.  Power spectrum of pressure at probe positions

    图  15  探测点压强相图

    Figure  15.  Phase diagram of pressure at probe positions

    图  16  压强时间序列最大Lyapunov指数

    Figure  16.  Maximal Lyapunov exponent of pressure time series

    表  1  风洞试验工况

    Table  1.   Condition of wind tunnel experiment

    Ma Re/m-1 T/K P/kPa
    5.8 10.2×106 410 810
    下载: 导出CSV
  • [1] 向星皓, 张毅锋, 陈坚强, 等. 横流转捩模型研究进展[J]. 空气动力学学报, 2018, 36(2): 254-264. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802010.htm

    Xiang X H, Zhang Y F, Chen J Q, et al. Progress in transition models for cross-flow instabilities[J]. Acta Aerodynamica Sinica, 2018, 36(2): 254-264(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802010.htm
    [2] 沈清, 袁湘江, 王强, 等. 可压缩边界层与混合层失稳结构的研究进展及其工程应用[J]. 力学进展, 2012, 42(3): 252-261. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201203004.htm

    Shen Q, Yuan X J, Wang Q, et al. Review on the instability structure in compressible boundary layers and mixing layers and its application[J]. Advances in Mechanics, 2012, 42(3): 252-261(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201203004.htm
    [3] 杨武兵, 沈清, 朱德华, 等. 高超声速边界层转捩研究现状与趋势[J]. 空气动力学学报, 2018, 36(2): 183-195. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802004.htm

    Yang W B, Shen Q, Zhu D H, et al. Tendency and current status of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2018, 36(2): 183-195(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802004.htm
    [4] Holden M S, Wadhams T P, MacLean M, et al. Reviews of studies of boundary layer transition in hypersonic flows over axisymmetric and elliptic cones conducted in the CUBRC shock tunnels[R]. AIAA 2009-0782, 2009.
    [5] Berger K T, Rufer S J, Kimmel R, et al. Aerothermodynamic characteristics of boundary layer transition and trip effectiveness of the HIFiRE Flight 5 vehicle[R]. AIAA 2009-4055, 2009.
    [6] Juliano T J, Schneider S P. Instability and transition on the HIFiRE-5 in a Mach 6 quiet tunnel[R]. AIAA 2010-5004, 2010.
    [7] Juliano T J, Borg M P, Schneider S P. Quiet tunnel measurements of HIFiRE-5 boundary-layer transition[J]. AIAA Journal, 2015, 53(4): 832-846. doi: 10.2514/1.J053189
    [8] Borg M P, Kimmel R, Stanfield S. HIFiRE-5 attachment-line and cross flow instability in a quiet hypersonic wind tunnel[R]. AIAA 2011-3247, 2011.
    [9] Borg M P, Kimmel R L, Stanfield S. Crossflow instability for HIFiRE-5 in a quiet hypersonic wind tunnel[R]. AIAA 2012-2821, 2012.
    [10] Borg M P, Kimmel R L, Stanfield S. Traveling crossflow instability for HIFiRE-5 in a quiet hypersonic wind tunnel[R]. AIAA 2013-2737, 2013.
    [11] Juliano T J, Poggie J, Porter K M, et al. HIFiRE-5b heat flux and boundary-layer transition[R]. AIAA 2017-3134, 2017.
    [12] Choudhari M, Chang C L, Jentink T, et al. Transition analysis for the HIFiRE-5 vehicle[R]. AIAA 2009-4056, 2009.
    [13] Gosse R, Kimmel R, Johnson H B. CFD study of the HiFiRE-5 flight experiment[R]. AIAA 2010-4854, 2010.
    [14] Li F, Choudhari M, Chang CL, et al. Stability analysis for HIFiRE experiments[R]. AIAA 2012-2961, 2012.
    [15] Dinzl D J, Candler G V. Direct numerical simulation of crossflow instability excited by microscale roughness on HIFiRE-5[R]. AIAA 2016-0353, 2016.
    [16] Tufts M W, Borg M P, Bisek N J, et al. High-fidelity simulation of HIFiRE-5 boundary-layer transition[R]. AIAA 2020-3025, 2020.
    [17] Boris J P, Grinstein F F, Oran E S, et al. New insights into large eddy simulation[J]. Fluid Dynamics Research, 1992, 10(4/6): 199-228.
    [18] Garnier E, Adams N, Sagaut P. Large eddy simulation for compressible flows[M]. Dordrecht: Springer, 2009.
    [19] Lu X Y, Wang S W, Sung H G, et al. Large-eddy simulations of turbulent swirling flows injected into a dump chamber[J]. Journal of Fluid Mechanics, 2005, 527(1): 171-196.
    [20] 朱志斌, 袁湘江, 陈林. 适用于超声速流场计算的有限体积紧致算法[J]. 航空动力学报, 2015, 30(10): 2481-2487. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201510023.htm

    Zhu Z B, Yuan X J, Chen L. Finite volume compact algorithm suited to computation of supersonic flow field[J]. Journal of Aerospace Power, 2015, 30(10): 2481-2487(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201510023.htm
    [21] 朱志斌, 潘宏禄, 程晓丽. 钝头双锥喷流致冷流场结构及密度脉动特性[J]. 航空动力学报, 2019, 34(7): 1425-1432. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201907003.htm

    Zhu Z B, Pan H L, Cheng X L. Flow field structures and density fluctuation characteristics around a blunted double cone with cooling jet[J]. Journal of Aerospace Power, 2019, 34(7): 1425-1432(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201907003.htm
    [22] 张红军, 朱志斌, 尚庆, 等. 锯齿形转捩片触发高超声速进气道边界层转捩的大涡模拟[J]. 航空学报, 2019, 40(10): 122930. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201910011.htm

    Zhang H J, Zhu Z B, Shang Q, et al. Large eddy simulation of hypersonic inlet boundary layer transition triggered by zig-zag trip[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 122930(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201910011.htm
    [23] 朱志斌, 程晓丽, 潘宏禄. 超声速喷流混合流场大涡模拟[J]. 航空动力学报, 2019, 34(1): 210-216. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201901023.htm

    Zhu Z B, Cheng X L, Pan H L. Large eddy simulation of supersonic jet mixing flow[J]. Journal of Aerospace Power, 2019, 34(1): 210-216(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201901023.htm
    [24] Poggie J, Bisek N J, Gosse R. Resolution effects in compressible, turbulent boundary layer simulations[J]. Computers & Fluids, 2015, 120: 57-69.
    [25] 吕金虎, 陆君安, 陈士华. 混沌时间序列分析及其应用[M]. 武汉: 武汉大学出版社, 2002.

    Lv J H, Lu J A, Chen S H. Chaotic time series analysis and its application[M]. Wuhan: Wuhan University Press, 2002(in Chinese).
    [26] Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series[J]. Physica D: Nonlinear Phenomena, 1985, 16(3): 285-317. doi: 10.1016/0167-2789(85)90011-9
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  28
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-30
  • 修回日期:  2021-10-09

目录

    /

    返回文章
    返回