主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于BOS的超声速流场瞬态密度场的可视化

张俊 吴运刚 严来军 殷可为

张俊, 吴运刚, 严来军, 殷可为. 基于BOS的超声速流场瞬态密度场的可视化[J]. 气体物理, 2021, 6(1): 62-68. doi: 10.19527/j.cnki.2096-1642.0842
引用本文: 张俊, 吴运刚, 严来军, 殷可为. 基于BOS的超声速流场瞬态密度场的可视化[J]. 气体物理, 2021, 6(1): 62-68. doi: 10.19527/j.cnki.2096-1642.0842
ZHANG Jun, WU Yun-gang, YAN Lai-jun, YIN Ke-wei. Visualization of Instantaneous Density Distribution Based on BOS for Supersonic Flow[J]. PHYSICS OF GASES, 2021, 6(1): 62-68. doi: 10.19527/j.cnki.2096-1642.0842
Citation: ZHANG Jun, WU Yun-gang, YAN Lai-jun, YIN Ke-wei. Visualization of Instantaneous Density Distribution Based on BOS for Supersonic Flow[J]. PHYSICS OF GASES, 2021, 6(1): 62-68. doi: 10.19527/j.cnki.2096-1642.0842

基于BOS的超声速流场瞬态密度场的可视化

doi: 10.19527/j.cnki.2096-1642.0842
详细信息
    作者简介:

    张俊(1982-)男, 硕士, 工程师, 主要研究方向为流场光学测量技术研究与应用.E-mail: zhangjun4117@163.com

    通讯作者:

    严来军(1986-)男, 博士, 工程师, 主要研究方向为流场光学测量技术研究与应用.E-mail: laijun11-11@163.com

  • 中图分类号: O353.5

Visualization of Instantaneous Density Distribution Based on BOS for Supersonic Flow

  • 摘要: 瞬态密度场的可视化对于超声速流场复杂流动机理研究有着重要的参考价值.设计了基于脉冲激光照明的瞬态密度场可视化系统,针对非对称尖锥模型在Ф=120 mm激波风洞开展了双方向密度场可视化应用研究,获得了Ma=6条件下激波流场清晰的瞬态和长曝光背景纹影图像.研究表明,瞬态背景纹影图像曝光时间为10 ns,能够有效"冻结"超声速流场;相对于长曝光纹影图像,瞬态图像显示了更小时间尺度的流场密度场,且突起较多,分布不均匀.结果表明,瞬态密度场可视化技术能够揭示瞬态激波流场的密度场细节,为超声速和高超声速流场复杂流动机理的深入理解和研究提供了一种有效方法.

     

  • 图  1  背景纹影测量原理图

    Figure  1.  Principle of BOS method

    图  2  时序控制示意图

    Figure  2.  Schematic diagram of timing control

    图  3  测量系统光路图

    Figure  3.  Schematic diagram of arrangement of optical path in wind tunnel test

    图  4  激波风洞双光路BOS测量实物图

    Figure  4.  Scene of wind tunnel test on site

    图  5  非对称尖锥模型

    Figure  5.  Non-axisymmetrical cone model

    图  6  模型测量方向

    Figure  6.  Placement of test model in bi-direction

    图  7  激光脉冲瞬态照明斑点背景

    Figure  7.  Dot background image captured under instantaneous laser illumination

    图  8  1#方向斑点位移量瞬态分布云图(10 ns)

    Figure  8.  Instantaneous displacement distribution in 1# direction(10 ns)

    图  9  2#方向位移量瞬态分布云图(10 ns)

    Figure  9.  Instantaneous displacement distribution in 2# direction(10 ns)

    图  10  LED常亮照明斑点背景

    Figure  10.  Dot background image captured under LED illumination

    图  11  1#方向斑点位移量时均分布云图(1 ms)

    Figure  11.  Long exposure displacement distribution in 1# direction(1 ms)

    图  12  2#方向斑点位移量瞬态云图(10 ns)

    Figure  12.  Instantaneous displacement distribution in 2# direction(10 ns)

  • [1] Meier G E. Computerized background-oriented schlieren[J]. Experiments in Fluids, 2002, 33(1): 181-187. doi: 10.1007/s00348-002-0450-7
    [2] Richard H, Raffel M, Rein M, et al. Demonstration of the applicability of a background oriented schlieren (BOS) method[C]. Proceedings of the 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 1998, Berlin, Springer-Verlag, 2000: 145-156.
    [3] Erik G, Jorg S. Background oriented schlieren technique-sensitivity, accuracy, resolution and application to a three-dimensional density field[C]. 13th Int Symp on Applications of Laser Techniques to Fluid Mechanics. Lisbon, Portugal, 2006.
    [4] Hargather M J, Settles G S. Natural-background-oriented schlieren imaging[J]. Experiments in Fluids, 2010, 48(1): 59-68. doi: 10.1007/s00348-009-0709-3
    [5] Clem M, Brown C, Fagan A. Background oriented schlieren implementation in a jet-surface interaction test[R]. AIAA 2013-0038, 2013.
    [6] Raghunath S, Mee D J, Roesgen T, et al. Visualization of supersonic flows in shock tunnels, using the backg-round oriented schlieren technique[C]. AIAA Australian Aerospace Student Conference, Sydney, 2004.
    [7] Richard H, Raffel M. Principle and applications of the background oriented schlieren (BOS) method[J]. Measurement Science and Technology, 2001, 12(9): 1576-1585. doi: 10.1088/0957-0233/12/9/325
    [8] Venkatakrishnan L, Meier G E. Density measurements using the background oriented schlieren technique[J]. Experiments in Fluids, 2004, 37(2): 237-247. doi: 10.1007/s00348-004-0807-1
    [9] Mier F A, Hargather M J. Color gradient background-oriented schlieren imaging[J]. Experiments in Fluids, 2016, 57(6): 95. doi: 10.1007/s00348-016-2183-z
    [10] Venkatakrishnan L. Density measurements in an axisymmetric underexpanded jet by background-oriented schlie-ren technique[J]. AIAA Journal, 2005, 43(7): 1574-1579. doi: 10.2514/1.12647
    [11] Leopold F. The application of the colored background oriented schlieren technique (CBOS) to free-flight and in-flight measurements[C]. 200722nd International Cong-ress on Instrumentation in Aerospace Simulation Facili-ties. Pacific Grove: IEEE, 2007.
    [12] Sourgen F, Leopold F, Klatt D. Reconstruction of the density field using the colored background oriented schlieren technique (CBOS)[J]. Optics and Lasers in Engineering, 2012, 50(1): 29-38. doi: 10.1016/j.optlaseng.2011.07.012
    [13] Bichal A, Thurow B S. On the application of background oriented schlieren for wavefront sensing[J]. Measurement Science and Technology, 2014, 25(1): 5001. http://www.ingentaconnect.com/content/iop/mst/2014/00000025/00000001/art015001
    [14] Ota M, Hamada K, Kato H, et al. Computed-tomogra-phic density measurement of supersonic flow field by coloured grid background oriented schlieren (CGBOS) technique[J]. Measurement Science and Technology, 2011, 22(10): 104011. doi: 10.1088/0957-0233/22/10/104011
    [15] Van Hinsberg N P, Rösgen T. Density measurements using near-field background-oriented schlieren[J]. Experiments in Fluids, 2014, 55(4): 1720. doi: 10.1007/s00348-014-1720-x
    [16] Kirmse T, Agocs J, Schröder A, et al. Application of particle image velocimetry and the background-oriented schlieren technique in the high-enthalpy shock tunnel göttingen[J]. Shock Waves, 2011, 21(3): 233-241. doi: 10.1007/s00193-011-0314-2
    [17] Kindler K, Goldhahn E, Leopold F, et al. Recent developments in background oriented schlieren methods for rotor blade tip vortex measurements[J]. Experiments in Fluids, 2007, 43(2): 233-240. doi: 10.1007/s00348-007-0328-9
    [18] Raffel M. Background-oriented schlieren(BOS) techni-ques[J]. Experiments in Fluids, 2015, 56(3): 60. doi: 10.1007/s00348-015-1927-5
    [19] Sommersel O K, Bjerketvedt D, Christensen S O, et al. Application of background oriented schlieren for quantitative measurements of shock waves from explosions[J]. Shock Waves, 2008, 18(4): 291-297. doi: 10.1007/s00193-008-0142-1
    [20] Gojani A B, Kamishi B, Obayashi S. Measurement sensitivity and resolution for background oriented schlieren during image recording[J]. Journal of Visualization, 2013, 16(3): 201-207. doi: 10.1007/s12650-013-0170-5
    [21] Hartmann U, Adamczuk R, Seume J. Tomographic background oriented schlieren applications for turbomachinery (Invited)[R]. AIAA 2015-1690, 2015.
    [22] Meier A H, Roesgen T. Improved background oriented schlieren imaging using laser speckle illumination[J]. Experiments in Fluids, 2013, 54(6): 1549. doi: 10.1007/s00348-013-1549-8
    [23] Mizukaki T, Tsukada H, Wakabayashi K, et al. Quantitative visualization of open-air explosions by using background-oriented schlieren with natural background[C]. 28th International Symposium on Shock Waves. Berlin: Springer, 2011.
    [24] Sourgen F, Haertig J, George A, et al. Validation of CFD density field validation in supersonic axisymmetric flows using BOS and differential interferometry[R]. AIAA 2005-6036, 2005.
    [25] Reinholtz C, Heltsley F, Scott K, et al. Visualization of jettison motor plumes from an orion launch abort vehicle wind tunnel model using background-oriented schlieren[R]. AIAA 2010-1736, 2012.
    [26] Suriyanarayanan P, Karthikeyan N, Venkatakrishnan L, et al. Density field measurements of a micro-explosion using BOS[C]. 28th International Symposium on Shock Wave. Berlin: Springer, 2011: 705-710.
    [27] Clem M, Zaman K, Fagan A. Background oriented schlieren applied to study shock spacing in a screeching circular jet[R]. AIAA 2012-0403, 2012.
    [28] 赵玉新, 易仕和, 田立丰, 等. 超声速混合层气动光学畸变与抖动——BOS测量技术及其应用[J]. 中国科学: G辑, 2010, 40(1): 33-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201001004.htm

    Zhao Y X, Yi S H, Tian L F, et al. Aero-optics distortion and jitter in supersonic mixing layer-BOS measurement and its application[J]. Science China: Physics, Mechanics & Astronomy, 2010, 40(1): 33-46(in China). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201001004.htm
    [29] 丁浩林, 易仕和, 吴宇阳, 等. 超声速气膜气动光学效应与Reynolds数相互关系实验研究[J]. 气体物理, 2017, 2(3): 54-63. http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=805f4682-8e0e-4c07-94c2-005b37701321

    Ding H L, Yi S H, Wu Y Y, et al. Experimental investigation on relationship between Reynolds number and aero-optics produced by supersonic films[J]. Physics of Gases, 2017, 2(3): 54-63(in Chinese). http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=805f4682-8e0e-4c07-94c2-005b37701321
    [30] 张俊, 胥頔, 张龙. 基于BOS技术的密度场测量研究[J]. 实验流体力学, 2015, 29(1): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201501012.htm

    Zhang J, Xu D, Zhang L. Research on density measurement based on background oriented schlieren method[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1): 77-82(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201501012.htm
  • 加载中
图(12)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  15
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-21
  • 修回日期:  2020-04-28
  • 发布日期:  2021-01-20
  • 刊出日期:  2021-01-20

目录

    /

    返回文章
    返回