主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三电极共面介质阻挡放电的放电特性及诱导气流实验研究

张兴 黄国旺 吴淑群 欧阳帆 张潮海

张兴, 黄国旺, 吴淑群, 欧阳帆, 张潮海. 三电极共面介质阻挡放电的放电特性及诱导气流实验研究[J]. 气体物理, 2021, 6(2): 28-37. doi: 10.19527/j.cnki.2096-1642.0840
引用本文: 张兴, 黄国旺, 吴淑群, 欧阳帆, 张潮海. 三电极共面介质阻挡放电的放电特性及诱导气流实验研究[J]. 气体物理, 2021, 6(2): 28-37. doi: 10.19527/j.cnki.2096-1642.0840
ZHANG Xing, HUANG Guo-wang, WU Shu-qun, OUYANG Fan, ZHANG Chao-hai. Experimental Study on Discharge Characteristics and Induced Airflow of Three-Electrode Coplanar Dielectric Barrier Discharge[J]. PHYSICS OF GASES, 2021, 6(2): 28-37. doi: 10.19527/j.cnki.2096-1642.0840
Citation: ZHANG Xing, HUANG Guo-wang, WU Shu-qun, OUYANG Fan, ZHANG Chao-hai. Experimental Study on Discharge Characteristics and Induced Airflow of Three-Electrode Coplanar Dielectric Barrier Discharge[J]. PHYSICS OF GASES, 2021, 6(2): 28-37. doi: 10.19527/j.cnki.2096-1642.0840

三电极共面介质阻挡放电的放电特性及诱导气流实验研究

doi: 10.19527/j.cnki.2096-1642.0840
基金项目: 

国家自然科学基金 51977110

中央高校基本科研业务费资助项目 NT2020007

详细信息
    作者简介:

    张兴(1992-)男, 硕士, 主要研究方向为气体放电与等离子体及航空航天应用.E-mail: zhangxing@nuaa.edu.cn

    通讯作者:

    吴淑群(1988-)男, 副教授, 主要研究方向为气体放电与等离子体及航空航天应用.E-mail: wushuqun@nuaa.edu.cn

  • 中图分类号: V211

Experimental Study on Discharge Characteristics and Induced Airflow of Three-Electrode Coplanar Dielectric Barrier Discharge

  • 摘要:

    等离子体流动控制激励器由于其响应速度快、激励频带宽、能量损耗低、可靠性强的优势,在航空航天领域的主动流动控制等方面得到了广泛应用.文章提出了一种新型的等离子体气动激励器——三电极共面介质阻挡放电激励器,研究了该激励器电极结构对放电特性和诱导气流速度的影响,并与传统共面介质阻挡放电和沿面介质阻挡放电激励器进行了比较.结果表明:(1)随着激励电压的提高,高压电极和地电极之间先出现了丝状放电并逐渐延伸到第三电极;(2)随着第三电极与高压电极之间的距离增大,诱导气流速率从2.4 m/s下降到0 m/s,而第三电极宽度的变动对诱导气流速度影响可忽略不计;(3)相同外部条件下,该激励器诱导的气流速度小于沿面介质阻挡放电激励器,但高于共面介质阻挡放电激励器.

     

  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of experimental equipment

    图  2  第三电极不同激励电压(峰峰值)下TCDBD的放电图片

    Figure  2.  Discharge picture of TCDBD under different excitation voltages(peek-to-peek values)

    图  3  不同激励电压(峰峰值)下TCDBD的电压和电流波形

    Figure  3.  Voltage and current waveform of TCDBD under different excitation voltages(peek-to-peek values)

    图  4  不同激励电压(峰峰值)下TCDBD激励器的Lissajous图

    Figure  4.  Lissajous diagram of TCDBD actuator with different excitation voltages (peak-to-peak values)

    图  5  第三电极与高压电极不同距离(d1)下TCDBD放电图

    Figure  5.  TCDBD discharge diagram under different distances(d1) between the third electrode and the high voltage electrode

    图  6  激励电压(峰峰值)U=28 kV下TCDBD激励器诱导出的水平方向气流速度Ufd1的关系曲线

    Figure  6.  Relation curve between horizontal flow velocity Uf and d1 induced by TCDBD actuator under excitation voltage (peak-to-peak value) U=28 kV

    图  7  第三电极不同宽度(d2)下TCDBD放电图

    Figure  7.  TCDBD discharge diagram under different widths(d2) of the third electrode

    图  8  激励电压(峰峰值)U=28 kV下TCDBD激励器诱导出的水平方向气流速度Uf与第三电极宽度d2的关系曲线

    Figure  8.  Relation curve between horizontal flow velocity Uf and third electrode width(d2) induced by TCDBD actuator under excitation voltage (peak-to-peak value) U=28 kV

    图  9  第三电极TCDBD的放电图

    Figure  9.  Discharge diagram of TCDBD under three conditions

    图  10  3类不同介质阻挡放电图

    Figure  10.  Three different dielectric barrier discharge diagrams

    图  11  3种不同介质阻挡放电电压电流图

    Figure  11.  Voltage and current diagrams of three different dielectric barrier discharges

    图  12  3种介质阻挡放电激励器在不同激励电压下的诱导气流速率比较

    Figure  12.  Comparison of airflow velocity induced by three dielectric barrier discharge actuators under different excitation voltages

  • [1] Zhang C, Ma Y Y, Kong F, et al. Atmospheric pressure plasmas and direct fluorination treatment of Al2O3-filled epoxy resin: A comparison of surface charge dissipation[J]. Surface and Coatings Technology, 2019, 362: 1-11. doi: 10.1016/j.surfcoat.2019.01.081
    [2] Wu S Q, Cao Y, Lu X P. The state of the art of applications of atmospheric-pressure nonequilibrium plasma jets in dentistry[J]. IEEE Transactions on Plasma Science, 2016, 44(2): 134-151. doi: 10.1109/TPS.2015.2506658
    [3] 郝泽宇, 于红, 杨亮, 等. 大气压沿面介质阻挡放电流动控制影响因素研究[J]. 真空科学与技术学报, 2015, 35(7): 837-843. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201507009.htm

    Hao Z Y, Yu H, Yang L, et al. Experimental study of airflow control by surface dielectric barrier discharge at atmospheric pressure[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(7): 837-843(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201507009.htm
    [4] Zhang C, Huang B D, Luo Z B, et al. Atmospheric-pressure pulsed plasma actuators for flow control: shock wave and vorte characteristics[J]. Plasma Sources Science and Technology, 2019, 28(6): 064001. doi: 10.1088/1361-6595/ab094c
    [5] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201502001.htm

    Wu Y, Li Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201502001.htm
    [6] 翟琪, 张正科, 蔡晋生, 等. 等离子体激励翼型分离流动控制数值模拟[J]. 气体物理, 2016, 1(2): 22-28. http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=e151cfc6-0b32-442b-8d3d-cd5b7691bec4

    Zhai Q, Zhang Z K, Cai J S, et al. Numerical simulation of plasma control of separated flows over airfoils[J]. Physics of Gases, 2016, 1(2): 22-28(in Chinese). http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=e151cfc6-0b32-442b-8d3d-cd5b7691bec4
    [7] Shang J J, 严红, 刘凡. 等离子体激励器在航空航天工程中的应用前景[J]. 气体物理, 2018, 3(2): 1-12. http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=ee8b0b49-bad8-4f85-8c5b-1a5eca773d4b

    Shang J J, Yan H, Liu F. A prospective of plasma actuators in aerospace engineering[J]. Physics of Gases, 2018, 3(2): 1-12(in Chinese). http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=ee8b0b49-bad8-4f85-8c5b-1a5eca773d4b
    [8] Jong A D, Bijl H. Corner-type plasma actuators for cavity flow-induced noise control[J]. AIAA Journal, 2015, 52(1): 33-42. doi: 10.2514/1.J051815
    [9] 史志伟, 范本根. 不同结构等离子体激励器的流场特性实验研究[J]. 航空学报, 2011, 32(9): 1583-1589. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201109003.htm

    Shi Z W, Fan B G. Experimental study on flow field characteristics of different plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1583-1589(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201109003.htm
    [10] Forte M, Jolibois J, Pons J, et al. Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control[J]. Experiments in Fluids, 2007, 43(6): 917-928. doi: 10.1007/s00348-007-0362-7
    [11] 吴阳阳, 贾敏, 王蔚龙, 等. 新型介质阻挡放电等离子体激励器的放电与诱导流动特性实验[J]. 电工技术学报, 2016, 31(24): 45-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201624005.htm

    Wu Y Y, Jia M, Wang W L, et al. Experimental research on the discharge and induced flow characteristics of a new dielectric barrier discharge plasma actuator[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 45-53(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201624005.htm
    [12] Hao J N, Tian B L, Wang Y L, et al. Dielectric barrier plasma dynamics for active aerodynamic flow control[J]. Science China Physics, Mechanics and Astronomy, 2014, 57(2): 345-353. doi: 10.1007/s11433-013-5164-8
    [13] Moreau E, Sosa R, Artana G. Electric wind produced by surface plasma actuators: a new dielectric barrier dischar-ge based on a three-electrode geometry[J]. Journal of Physics D Applied Physics, 2008, 41(11): 115204-115212. doi: 10.1088/0022-3727/41/11/115204
    [14] Wu S Q, Huang G W, Cheng W X, et al. The influences of the electrode dimension and the dielectric material on the breakdown characteristics of coplanar dielectric barrier discharge in ambient air[J]. Plasma Processes and Polymers, 2017, 14(12): e1700112. doi: 10.1002/ppap.201700112
    [15] 史曜炜, 周若瑜, 崔行磊, 等. 不同电源激励下共面介质阻挡放电特性实验[J]. 电工技术学报, 2018, 33(22): 5371-5380. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201822025.htm

    Shi Y W, Zhou R Y, Cui X L, et al. Experimental investigation on characteristics of coplanar dielectric barrier discharge driven by different power supplies[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5371-5380(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201822025.htm
    [16] Stepanova V, Kelar J, Galmiz O, et al. A real homoge-neity verification of plasma generated by diffuse coplanar surface barrier discharge in ambient air at atmospheric pressure[J]. Contributions to Plasma Physics, 2017, 57(4): 182-189. doi: 10.1002/ctpp.201600093
    [17] Opaits D F, Shneider M N, Miles R B, et al. Surface charge in dielectric barrier discharge plasma actuators[J]. Physics of Plasmas, 2008, 15(7): 073505. doi: 10.1063/1.2955767
    [18] Paniel E, Rabat H, Hong D P. Relative residual charge distribution and the corresponding discharge image of a surface DBD[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2696-2697. doi: 10.1109/TPS.2014.2338494
    [19] 车学科, 聂万胜, 丰松江, 等. 介质阻隔面放电的结构参数[J]. 高电压技术, 2009, 35(9): 2213-2219. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200909031.htm

    Che X K, Nie W S, Feng S J, et al. Geometrical parameter of dielectric barrier surface discharge[J]. High Voltage Engineering, 2009, 35(9): 2213-2219(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200909031.htm
    [20] 赵小虎, 李应红, 李益文, 等. 介质阻挡放电等离子体气动激励的动量特性[J]. 航空动力学报, 2010, 25(8): 1791-1798. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201008018.htm

    Zhao X H, Li Y H, Li Y W, et al. Momentum characteristic of dielectric barrier discharge plasma aerodynamic actuation[J]. Journal of Aerospace Power, 2010, 25(8): 1791-1798(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201008018.htm
    [21] 姜慧, 邵涛, 章程, 等. 不同电极间距下纳秒脉冲表面介质阻挡放电分布特性[J]. 电工技术学报, 2017, 32(2): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201702004.htm

    Jiang H, Shao T, Zhang C, et al. Distribution characteristics of nanosecond-pulsed surface dielectric barrier discharge at different electrode gaps[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 33-42(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201702004.htm
  • 加载中
图(12)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  19
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-10
  • 修回日期:  2020-04-30
  • 发布日期:  2021-03-20
  • 刊出日期:  2021-03-20

目录

    /

    返回文章
    返回