主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞行器大攻角复杂流动的POD和DMD对比分析

张扬 张来平 邓小刚 孙海生

张扬, 张来平, 邓小刚, 孙海生. 飞行器大攻角复杂流动的POD和DMD对比分析[J]. 气体物理, 2018, 3(5): 30-40. doi: 10.19527/j.cnki.2096-1642.2018.05.004
引用本文: 张扬, 张来平, 邓小刚, 孙海生. 飞行器大攻角复杂流动的POD和DMD对比分析[J]. 气体物理, 2018, 3(5): 30-40. doi: 10.19527/j.cnki.2096-1642.2018.05.004
ZHANG Yang, ZHANG Lai-ping, DENG Xiao-gang, SUN Hai-sheng. POD and DMD Analysis of Complex Separation Flows over a Aircraft Model at High Angle of Attack[J]. PHYSICS OF GASES, 2018, 3(5): 30-40. doi: 10.19527/j.cnki.2096-1642.2018.05.004
Citation: ZHANG Yang, ZHANG Lai-ping, DENG Xiao-gang, SUN Hai-sheng. POD and DMD Analysis of Complex Separation Flows over a Aircraft Model at High Angle of Attack[J]. PHYSICS OF GASES, 2018, 3(5): 30-40. doi: 10.19527/j.cnki.2096-1642.2018.05.004

飞行器大攻角复杂流动的POD和DMD对比分析

doi: 10.19527/j.cnki.2096-1642.2018.05.004
基金项目: 

国家重点研发计划 2016YFB0200701

中国自然科学基金 11532016

中国自然科学基金 91530325

详细信息
    作者简介:

    张扬(1981-)男, 博士, 工程师, 从事低速风洞实验和数值模拟研究.E-mail:zhangy29v@sina.com

    通讯作者:

    张来平(1968-)男, 博士, 研究员, 主要研究方向为复杂外形混合网格生成技术、非定常数值模拟方法.E-mail:zhanglp_cardc@126.com

  • 中图分类号: V231.2

POD and DMD Analysis of Complex Separation Flows over a Aircraft Model at High Angle of Attack

  • 摘要: 基于非结构/混合网格、耗散自适应2阶混合格式以及脱体涡模拟(detached eddy simulation,DES)方法开展了现代战斗机模型复杂分离流动的数值模拟,并与有限的平均气动力试验数据进行了对比,结果表明计算具有合理性,在此基础上进一步应用本征正交分解(proper orthogonal decomposition,POD)和动力学模态分解(dynamic mode decomposition,DMD)方法对数值模拟流场的非定常特性进行了对比分析.研究表明飞行器背风区流场由一对边条涡的螺旋运动主导,旋涡破裂前在横向空间截面上流场是中性稳定的,同时主涡核的运动是多频耦合的.POD和DMD的对比分析则表明:两者模态配对的方式不同,但主要模态之间具有一定相关性;POD模态中包含多种频率的运动,而且能量较集中于主模态,流场重构效率更高;DMD则将流场的主要特征运动提取为一些单频模态的组合,同时能够给出模态的稳定性.

     

  • 图  1  计算模型

    Figure  1.  Computational model

    图  2  计算网格

    Figure  2.  Grids used for the simulation

    图  3  计算与试验对比

    Figure  3.  Comparisons of numerical prediction with the experimental data

    图  4  α=36° Q涡量等值面

    Figure  4.  Iso-surfaces of Q-criterion at α=36°

    图  5  样本采集区域

    Figure  5.  Sampling area

    图  6  POD模态系数的时间历程

    Figure  6.  Time histories of POD coefficients

    图  7  POD模态系数的功率谱

    Figure  7.  Power spectral densities of POD coefficients

    图  8  POD模态能量分布

    Figure  8.  Energy distributions of POD modes

    图  9  POD模态

    Figure  9.  POD modes

    图  10  特征值

    Figure  10.  Eigenvalues

    图  11  增长率与幅值关系

    Figure  11.  Amplitudes as a function of growth rates

    图  12  DMD模态系数的时间历程

    Figure  12.  Time histories of DMD coefficients

    图  13  DMD模态系数的功率谱

    Figure  13.  Power spectral densities of DMD coefficients

    图  14  模态系数频率与幅值的关系

    Figure  14.  Amplitudes as a function of St

    图  15  DMD模态数量与损失函数的关系

    Figure  15.  Relationship between DMD modes and loss function

    图  16  DMD模态实部

    Figure  16.  Real part of DMD modes

    图  17  DMD模态虚部

    Figure  17.  Imaginary part of DMD modes

  • [1] 刘平安, 林永峰, 陈垚峰, 等.旋翼悬停状态桨尖涡测量方法研究[J].实验流体力学, 2017, 31(4):39-44. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201704007

    Liu P A, Lin Y F, Chen Y F, et al. Blade tip vortex measurements of a hovering rotor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4):39-44(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201704007
    [2] 曹晓东.客机座舱内空气流动特征2D-PIV实验研究[D].天津: 天津大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10056-1017131375.htm

    Cao X D. Experimental study of the airflow characteristics in a passenger aircraft cabin mockup with 2D-PIV[D]. Tianjin: Tianjin University, 2016(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10056-1017131375.htm
    [3] Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows[C]. Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, Reno: AIAA, 1992. https://www.researchgate.net/publication/236888804_A_One-Equation_Turbulence_Model_for_Aerodynamic_Flows
    [4] Spalart P R, Jou W H, Strelets M, et al. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach[C]. Proceedings of 1st AFOSR Interna-tional Conference on DNS/LES, Columbus: Greyden Press, 1997. https://www.researchgate.net/publication/236888805_Comments_on_the_Feasibility_of_LES_for_Wings_and_on_a_Hybrid_RANSLES_Approach
    [5] Lumley J L. The structure of inhomogeneous turbulent flow[C]. Atmospheric Turbulence and Radio Wave Propagation, Moscow: Nauka, 1967: 166-176.
    [6] Schmid P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656:5-28. doi: 10.1017/S0022112010001217
    [7] Chen K K, Tu J H, Rowley C W. Variants of dynamic mode decomposition:boundary condition, Koopman, and Fourier analyses[J]. Journal of Nonlinear Science, 2012, 22(6):887-915. doi: 10.1007/s00332-012-9130-9
    [8] Wynn A, Pearson D S, Ganapathisubramani B, et al. Optimal mode decomposition for unsteady flows[J]. Journal of Fluid Mechanics, 2013, 733:473-503. doi: 10.1017/jfm.2013.426
    [9] Jovanović M R, Schmid P J, Nichols J W. Sparsity-promoting dynamic mode decomposition[J]. Physics of Fluids, 2014, 26(2):024103. doi: 10.1063/1.4863670
    [10] 寇家庆, 张伟伟.动力学模态分解及其在流体力学中的应用[J].空气动力学学报, 2018, 36(2):163-179. doi: 10.7638/kqdlxxb-2017.0134

    Kou J Q, Zhang W W. Dynamic mode decomposition and its applications in fluid dynamics[J]. Acta Aerodynamica Sinica, 2018, 36(2):163-179(in Chinese). doi: 10.7638/kqdlxxb-2017.0134
    [11] Menter F R. Zonal two equation k-ω turbulence models for aerodynamic flows[C]. Proceedings of the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, Fluid Dynamics and Co-located Conferences, Orlando: AIAA, 1993. doi: 10.2514/6.1993-2906
    [12] Gritskevich M S, Garbaruk A V, Schütze J, et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow, Turbulence and Combustion, 2012, 88(3):431-449. doi: 10.1007/s10494-011-9378-4
    [13] Zhang L P, Wang Z J. A block LU-SGS implicit dual time-stepping algorithm for hybrid dynamic meshes[J]. Computers & Fluids, 2004, 33(7):891-916. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=74028883e62cb83bb8ab2e8d36e9617a
    [14] Zhang Y, Zhang L P, He X, et al. An improved second-order finite-volume algorithm for detached-eddy simula-tion based on hybrid grids[J]. Communications in Computational Physics, 2016, 20(2):459-485. doi: 10.4208/cicp.190915.240216a
    [15] Strelets M. Detached eddy simulation of massively separated flows[C]. Proceedings of the 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, Reno: AIAA, 2001. https://www.researchgate.net/publication/236888809_Detached_Eddy_Simulation_of_Massively_Separated_Flows
    [16] Xiao L H, Xiao Z X, Duan Z W, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[C]. Proceedings of the 8th International Conference on Computational Fluid dynamics, Mianyang: China Aerodynamics Research and Develo-pment Center, 2014. https://www.sciencedirect.com/science/article/pii/S0142727X14001325
    [17] Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computa-tional Physics, 1981, 43(2):357-372. doi: 10.1006-jcph.1997.5705/
    [18] Sozer E, Brehm C, Kiris C C. Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered CFD solvers[C]. Proceedings of the 52nd Aerospace Sciences Meeting, National Harbor: AIAA, 2014. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140011550.pdf
    [19] Liu J, Sun H S, Huang Y, et al. Numerical investigation of an advanced aircraft model during pitching motion at high incidence[J]. Science China Technological Sciences, 2016, 59(2):276-288. doi: 10.1007/s11431-015-5957-2
    [20] Zhang Y, Zhang L P, He X, et al. Detached eddy simu-lation of complex separation flows over a modern fighter model at high angle of attack[J]. Communications in Computational Physics, 2017, 22(5):1309-1332. doi: 10.4208/cicp.OA-2016-0132
    [21] 叶坤, 叶正寅, 武洁, 等. DMD和POD对超燃冲压发动机凹腔流动的稳定性分析[J].气体物理, 2016, 1(5):39-51. http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=113b62e8-67b8-487b-84b8-1f056bc92441

    Ye K, Ye Z Y, Wu J, et al. Stability analysis of scramjet open cavity flow base on POD and DMD method[J]. Physics of Gases, 2016, 1(5):39-51(in Chinese). http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=113b62e8-67b8-487b-84b8-1f056bc92441
  • 加载中
图(17)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  17
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-07
  • 修回日期:  2018-08-01
  • 发布日期:  2018-09-20
  • 刊出日期:  2018-09-01

目录

    /

    返回文章
    返回