主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内聚锥形激波的非均匀强化与结构演变特征

姬隽泽 张恩来 司东现 李祝飞 杨基明

姬隽泽, 张恩来, 司东现, 李祝飞, 杨基明. 内聚锥形激波的非均匀强化与结构演变特征[J]. 气体物理, 2021, 6(3): 1-14. doi: 10.19527/j.cnki.2096-1642.0856
引用本文: 姬隽泽, 张恩来, 司东现, 李祝飞, 杨基明. 内聚锥形激波的非均匀强化与结构演变特征[J]. 气体物理, 2021, 6(3): 1-14. doi: 10.19527/j.cnki.2096-1642.0856
JI Jun-ze, ZHANG En-lai, SI Dong-xian, LI Zhu-fei, YANG Ji-ming. Non-Uniform Intensification Behaviors of a Converging Conical Shock Wave[J]. PHYSICS OF GASES, 2021, 6(3): 1-14. doi: 10.19527/j.cnki.2096-1642.0856
Citation: JI Jun-ze, ZHANG En-lai, SI Dong-xian, LI Zhu-fei, YANG Ji-ming. Non-Uniform Intensification Behaviors of a Converging Conical Shock Wave[J]. PHYSICS OF GASES, 2021, 6(3): 1-14. doi: 10.19527/j.cnki.2096-1642.0856

内聚锥形激波的非均匀强化与结构演变特征

doi: 10.19527/j.cnki.2096-1642.0856
基金项目: 

国家自然科学基金 11872356

国家自然科学基金 11772325

国家自然科学基金 11621202

详细信息
    作者简介:

    姬隽泽(1994-)男, 博士, 主要研究方向为高超声速空气动力学.E-mail: jijunze@mail.ustc.edu.cn

    通讯作者:

    杨基明(1959-)男, 教授, 主要研究方向为高超声速空气动力学、激波动力学和实验流体力学.E-mail: jmyang@ustc.edu.cn

  • 中图分类号: O354.5;V211.48

Non-Uniform Intensification Behaviors of a Converging Conical Shock Wave

  • 摘要: 以高超声速内转式进气道流动中的激波汇聚问题为背景,考虑工程实际中的来流和壁面几何条件这两个关键因素,分别提出了以来流攻角为研究参数的非轴向来流内锥流动模型,和以长/短轴比为研究参数的椭圆入口内锥流动模型.采用激波风洞实验观测和数值模拟相结合的方法,揭示了两类流动中激波的非均匀汇聚特征.结果表明:由来流攻角引起的激波初始沿周向强度分布的不均匀性会在汇聚过程中被放大,迎风面和背风面的激波差异不断加剧;来流攻角越大,初始激波强度不均匀性越强,在汇聚过程中激波面越容易出现不连续的拐折,且出现拐折后激波的汇聚效应会被削弱.由椭圆入口形成的等强度激波在初始时周向的几何不均匀性使激波在汇聚过程中出现沿长/短轴方向的强度差异,激波沿长轴方向上的强度增加更迅速;椭圆长/短轴比越大,激波初始几何不均匀性越强,在汇聚过程中长/短轴两个方向激波强度差异凸显得越快,波面越容易出现不连续的拐折,进而削弱激波的汇聚.在偏离轴对称达到一定程度时,这两种条件下的激波汇聚都会出现汇聚中心处从Mach反射向规则反射的转变.

     

  • 图  1  来流攻角下的轴对称内压缩直锥模型

    Figure  1.  Ring wedge model at angle of attack

    图  2  椭圆入口内压缩直锥模型

    Figure  2.  Elliptical wedge model

    图  3  轴对称基准流场结构

    Figure  3.  Axisymmetric conical flow

    图  4  轴对称入射激波对称面上压比分布

    Figure  4.  Pressure ratio distribution of the axisymmetric incident shock on the symmetry plane

    图  5  α=2°流场结构

    Figure  5.  Conical flow at α=2°

    图  6  α=2°流场横截面密度云图

    Figure  6.  Density contours on cross sections at α=2°

    图  7  α=2°流场横截面激波压比分布

    Figure  7.  Pressure ratio distributions on cross sections at α=2°

    图  8  α =5°流场结构

    Figure  8.  Conical flow at α =5°

    图  9  α =5°流场横截面密度云图

    Figure  9.  Density contours on cross sections at α =5°

    图  10  α =5°流场横截面激波压比分布

    Figure  10.  Pressure ratio distribution on cross sections at α =5°

    图  11  椭圆内锥AR =1.11时长轴平面流场结构

    Figure  11.  Elliptical conical flow on the major plane with AR=1.11

    图  12  椭圆内锥AR =1.11时短轴平面流场结构

    Figure  12.  Elliptical conical flow on the minor plane with AR =1.11

    图  13  椭圆内锥AR =1.11时流场横截面密度云图

    Figure  13.  Density contours on cross sections at AR =1.11

    图  14  椭圆内锥AR=1.11时流场横截面激波压比分布

    Figure  14.  Pressure ratio distribution on cross sections at AR =1.11

    图  15  椭圆内锥AR =1.43时长轴平面流场结构

    Figure  15.  Elliptical conical flow on the major plane with AR =1.43

    图  16  椭圆内锥AR =1.43时短轴平面流场结构

    Figure  16.  Elliptical conical flow on the minor plane with AR =1.43

    图  17  椭圆内锥AR =1.43时流场横截面密度云图

    Figure  17.  Numerical density contours on the sections at AR =1.43

    图  18  椭圆内锥AR =1.43时流场横截面激波压比分布

    Figure  18.  Pressure ratio distribution on the sections at AR =1.43

  • [1] You Y C. An overview of the advantages and concerns of hypersonic inward turning inlets[R]. AIAA 2011-2269, 2011.
    [2] Goldfeld M A, Nestoulia R V. Numerical and experi-mental studies of 3D hypersonic inlet[J]. Journal of Thermal Science, 2002, 11(3): 198-206. doi: 10.1007/s11630-002-0055-8
    [3] Zuo F Y, Mölder S. Hypersonic wavecatcher intakes and variable-geometry turbine based combined cycle engines[J]. Progress in Aerospace Sciences, 2019, 106: 108-144. doi: 10.1016/j.paerosci.2019.03.001
    [4] 乔文友, 余安远. 内转式进气道与飞行器前体的一体化设计综述[J]. 实验流体力学, 2019, 33(3): 43-59. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201903006.htm

    Qiao W Y, Yu A Y. Overview on integrated design of inward-turning inlet with aircraft forebody [J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43-59(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201903006.htm
    [5] 尤延铖, 梁德旺. 内乘波式进气道内收缩基本流场研究[J]. 空气动力学学报, 2008, 26(2): 203-207. doi: 10.3969/j.issn.0258-1825.2008.02.012

    You Y C, Liang D W. Investigation of internal compres-sion flowfield for internal waverider-derived inlet[J]. Acta Aerodynamica Sinica, 2008, 26(2): 203-207(in Chinese). doi: 10.3969/j.issn.0258-1825.2008.02.012
    [6] Ferri A. Application of the method of characteristics to supersonic rotational flow[R]. National Aeronautics and Space Admin Langley Research Center, 1946.
    [7] 李永洲. 马赫数分布可控的高超声速内收缩进气道及其一体化设计研究[D]. 南京: 南京航空航天大学, 2014.

    Li Y Z. Investigation of hypersonic inward turning inlet with controlled Mach number distribution and its integrated design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
    [8] 汤飘平, 苏纬仪, 张堃元. 基于内锥和中心体表面流动参数分布的轴对称基准流场反设计[J]. 推进技术, 2017, 38(8): 1709-1716. https://d.wanfangdata.com.cn/periodical/tjjs201708004

    Tang P P, Su W Y, Zhang K Y. Inverse design of axisymmetric basic flow field with destined flow distributions on wall of inner cone and center body[J]. Journal of Propulsion Technology, 2017, 38(8): 1709-1716(in Chinese). https://d.wanfangdata.com.cn/periodical/tjjs201708004
    [9] Lewis M. A hypersonic propulsion airframe integration overview[R]. AIAA 2003-4405, 2003.
    [10] 何粲. 双模态超燃冲压发动机隔离段流动特性研究[D]. 绵阳: 中国空气动力研究与发展中心, 2015.

    He C. Investigation of flow characteristics in the dual-mode scramjet isolator[D]. Mianyang: China Aerodynamics Research and Development Center, 2015(in Chinese).
    [11] Mölder S. Internal, axisymmetric, conical flow[J]. AIAA Journal, 1967, 5(7): 1252-1255. doi: 10.2514/3.4179
    [12] Timofeev E, Mölder S, Voinovich P, et al. Shock wave reflections in axisymmetric flow[C]. Proceedings of the 23rd International Symposium on Shock Waves, Arlington: University of Texas, 2001.
    [13] Isakova N P, Kraiko A N, P'yankov K S, et al. The amplification of weak shock waves in axisymmetric super-sonic flow and their reflection from an axis of symme-try[J]. Journal of Applied Mathematics and Mechanics, 2012, 76(4): 451-465. doi: 10.1016/j.jappmathmech.2012.09.013
    [14] Gounko Y P. Patterns of steady axisymmetric supersonic compression flows with a Mach disk[J]. Shock Waves, 2017, 27(3): 495-506. doi: 10.1007/s00193-016-0700-x
    [15] Shoesmith B, Mölder S, Ogawa H, et al. Shock reflection in axisymmetric internal flows[C]. Proceedings of the 22nd International Shock Interaction Symposium on Shock Wave Interactions. Cham: Springer, 2017.
    [16] Mölder S. Curved aerodynamic shock waves[D]. Montreal: McGill University, 2012.
    [17] Mölder S. Curved shock theory[J]. Shock Waves, 2016, 26(4): 337-353. doi: 10.1007/s00193-015-0589-9
    [18] Mölder S. Flow behind concave shock waves[J]. Shock Waves, 2017, 27(5): 721-730. doi: 10.1007/s00193-017-0713-0
    [19] Filippi A A, Skews B W. Supersonic flow fields resulting from axisymmetric internal surface curvature[J]. Journal of Fluid Mechanics, 2017, 831: 271-288. doi: 10.1017/jfm.2017.643
    [20] 杨大伟, 余安远, 韩亦宇, 等. 内转式进气道自起动性能研究[J]. 推进技术, 2019, 40(1): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201901010.htm

    Yang D W, Yu A Y, Han Y Y, et al. Study on self-starting characteristics of an inward turning inlet[J]. Journal of Propulsion Technology, 2019, 40(1): 76-83(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201901010.htm
    [21] 王卫星, 郭荣伟. 圆形出口内转式进气道流动特征[J]. 航空学报, 2016, 37(2): 533-544. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201602017.htm

    Wang W X, Guo R W. Characteristics of an inward turning inlet with circular outlet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 533-544(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201602017.htm
    [22] Smart M K, Trexler C A. Mach 4 performance of a fixed-geometry hypersonic inlet with rectangular-to-elliptical shape transition[R]. AIAA 2003-0012, 2003.
    [23] 王卫星, 李博, 郭荣伟. 不同反压下椭圆形隔离段流场特征与气动性能[J]. 航空动力学报, 2010, 25(3): 647-653. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201003028.htm

    Wang W X, Li B, Guo R W. Flow characteristic and aerodynamic performance in elliptic shape isolator at different back pressures[J]. Journal of Aerospace Power, 2010, 25(3): 647-653(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201003028.htm
    [24] 张恩来. 高超声速内外流中的三维激波相互作用[D]. 合肥: 中国科学技术大学, 2019.

    Zhang E L. Characteristics of three-dimensional shock interactions in the internal/external integration flow of a hypersonic vehicle[D]. Heifei: University of Science and Technology of China, 2019(in Chinese).
    [25] Li Z F, Gao W Z, Jiang H L, et al. Unsteady behaviors of a hypersonic inlet caused by throttling in shock tunnel[J]. AIAA Journal, 2013, 51(10): 2458-2492. doi: 10.2514/1.J052384
    [26] 李祝飞, 高文智, 李鹏, 等. 一种进气道自起动特性检测方法[J]. 实验流体力学, 2013, 27(2): 14-18, 23. doi: 10.3969/j.issn.1672-9897.2013.02.003

    Li Z F, Gao W Z, Li P, et al. A test method for inlet self-starting ability detection[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 14-18(in Chinese). doi: 10.3969/j.issn.1672-9897.2013.02.003
    [27] 张恩来, 李祝飞, 李一鸣, 等. 斜激波入射V形钝前缘溢流口激波干扰研究[J]. 实验流体力学, 2018, 32(3): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201803005.htm

    Zhang E L, Li Z F, Li Y M, et al. Investigation on the shock interactions between an incident shock and a plate with V-shaped blunt leading edge[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 50-57(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201803005.htm
    [28] 阎超, 涂正光, 于晓红, 等. 激波碰撞干扰流动非定常效应的数值研究[J]. 北京航空航天大学学报, 2003, 29(3): 214-217. doi: 10.3969/j.issn.1001-5965.2003.03.007

    Yan C, Tu Z G, Yu X H, et al. Numerical research on unsteady effect of shock-shock interference flow [J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(3): 214-217(in Chinese). doi: 10.3969/j.issn.1001-5965.2003.03.007
    [29] 肖丰收. 若干典型高超声速激波干扰流动特性研究[D]. 合肥: 中国科学技术大学, 2016.

    Xiao F S. Research on flow characteristics of some typical hypersonic shock wave interactions [D]. Hefei: Univer-sity of Science and Technology of China, 2016(in Chinese).
    [30] 姬隽泽, 李祝飞, 张恩来, 等. 近轴对称内收缩流场中的激波干扰[J]. 实验流体力学, 2019, 33(5): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201905001.htm

    Ji J Z, Li Z F, Zhang E L, et al. Shock interactions in near-axisymmetric internal contraction flows[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 1-9(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201905001.htm
  • 加载中
图(18)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  38
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-18
  • 修回日期:  2020-07-14
  • 发布日期:  2021-05-20
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回