主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速湍流边界层湍流统计与湍流结构分析

刘强 罗振兵 邓雄 程盼 王林 周岩

刘强, 罗振兵, 邓雄, 程盼, 王林, 周岩. 超声速湍流边界层湍流统计与湍流结构分析[J]. 气体物理, 2021, 6(3): 30-42. doi: 10.19527/j.cnki.2096-1642.0815
引用本文: 刘强, 罗振兵, 邓雄, 程盼, 王林, 周岩. 超声速湍流边界层湍流统计与湍流结构分析[J]. 气体物理, 2021, 6(3): 30-42. doi: 10.19527/j.cnki.2096-1642.0815
LIU Qiang, LUO Zhen-bing, DENG Xiong, CHENG Pan, WANG Lin, ZHOU Yan. Turbulence Statistics and Structures of a Supersonic Boundary Layer by Direct Numerical Simulation[J]. PHYSICS OF GASES, 2021, 6(3): 30-42. doi: 10.19527/j.cnki.2096-1642.0815
Citation: LIU Qiang, LUO Zhen-bing, DENG Xiong, CHENG Pan, WANG Lin, ZHOU Yan. Turbulence Statistics and Structures of a Supersonic Boundary Layer by Direct Numerical Simulation[J]. PHYSICS OF GASES, 2021, 6(3): 30-42. doi: 10.19527/j.cnki.2096-1642.0815

超声速湍流边界层湍流统计与湍流结构分析

doi: 10.19527/j.cnki.2096-1642.0815
基金项目: 

国家自然科学基金 11602299

国家自然科学基金 11972369

国家自然科学基金 51809271

详细信息
    作者简介:

    刘强(1993-)男, 博士生, 主要研究方向为主动流动控制.E-mail: liuqiang12@nudt.edu.cn

    通讯作者:

    王林(1984-)男, 博士, 讲师, 主要研究方向为高超声速飞行器内外流控制技术.E-mail: wanglin-2007@126.com

  • 中图分类号: V242;O357.4+1

Turbulence Statistics and Structures of a Supersonic Boundary Layer by Direct Numerical Simulation

  • 摘要: 可压缩边界层转捩问题与湍流问题一直是制约高超声速飞行器发展的关键基础问题,也是近年来流体力学领域研究的热点问题.采用直接数值模拟方法,获得了空间发展的Ma=2.25超声速湍流边界层流场,通过对湍流边界层的发展状态进行评估,得出有效的Reynolds数Reθ范围约为2 600~4 600.对壁面摩阻系数开展了分解,获得了各分量的占比,对充分发展的湍流边界层进行1阶和高阶统计分析,包括形状因子、壁面律、平坦因子与偏斜因子、Reynolds应力、脉动涡量等,得到了剪切Reynolds数与动量Reynolds数之间的关系式,分析了湍流边界层壁面律的分层特性,发现湍流的间歇特性主要分布在y+ < 30的区域,并且法向速度脉动的间歇性远高于另外两者,3个方向上的Reynolds应力分布和涡量分布都存在较大差异.通过两点相关性分析和Lagrange涡结构,对近壁区湍流结构进行了分析,包括流向平面和展向平面,发现流向脉动速度的相关区域流向尺度较长,呈现狭长的特性,并且流向平面的相关系数与壁面存在一定的夹角;而在边界层外层,流向速度脉动相关区域的流向尺度变短而展向尺度增加,呈现宽胖型.研究结果进一步加深了对超声速湍流边界层的认识,为下一步湍流边界层的流动控制奠定了基础.

     

  • 图  1  计算网格示意图

    Figure  1.  Sketch of computational domain

    图  2  瞬时流场的涡结构图

    Figure  2.  Vortex structure of instantaneous flow field (Q=0.01, colored by flow velocity)

    图  3  瞬时流向流场温度云图

    Figure  3.  Temperature distribution of instantaneous flow field

    图  4  不同流向位置的瞬时流场温度云图(y+=15)

    Figure  4.  Temperature distribution of instantaneous flow field at different flow positions(y+=15)

    图  5  瞬时流向流场数值纹影图

    Figure  5.  Numerical schlieren of instantaneous flow field

    图  6  湍流边界层发展状态评估

    Figure  6.  Evaluation for the development of turbulent boundary layer

    图  7  充分发展段的湍流边界层摩阻系数分解

    Figure  7.  Decomposition of skin friction coefficient in fully developed turbulent boundary layer

    图  8  超声速湍流边界层不同Reynolds数之间的关系

    Figure  8.  Relations between various Reynolds numbers in supersonic turbulent boundary layer

    图  9  超声速平板湍流边界层平均速度分布曲线

    Figure  9.  Mean velocity distribution curves of supersonic turbulent boundary layer

    图  10  湍流边界层脉动速度的高阶统计矩

    Figure  10.  High order statistical moments of fluctuating velocity in turbulent boundary layer

    图  11  超声速平板湍流边界层Reynolds正应力分布

    Figure  11.  Reynolds normal stress distribution in supersonic turbulent boundary layer

    图  12  超声速平板湍流边界层涡量脉动强度分布(Reθ=4 080)

    Figure  12.  Distribution of vorticity fluctuation intensity in supersonic turbulent boundary layer

    图  13  两个平面流向脉动速度云图

    Figure  13.  Streamwise fluctuating velocities in two planes

    图  14  两个平面的空间相关分布

    Figure  14.  Distributions of the two-point correlations in two planes

    图  15  湍流边界层不同高度处流向速度脉动空间相关性沿展向的分布

    Figure  15.  Distributions of the two-point correlations in spanwise direction at various distances from the wall

    图  16  法向高度为y/δ99=0.2的展向自相关函数

    Figure  16.  Distribution of the two-point correlations in spanwise direction at the height of y/δ99=0.2

    图  17  两个平面流向自相关函数

    Figure  17.  Distributions of the two-point correlations in streamwise direction

    图  18  流向位置为x=275δin处的不同法向高度X-Y平面空间相关系数分布

    Figure  18.  Distributions of the two-point correlations in streamwise plane

    图  19  法向高度分别为y+=5和y+=15的两个平面的LCS结构

    Figure  19.  Lagrangian coherent structures in two planes at the heights of y+=5 and y+=15

    表  1  超声速来流条件

    Table  1.   Inlet conditions of boundary layer

    Ma Re/in-1 T/K δin/mm Reθ Reδ*
    2.25 6.35×105 169.4 0.45 1 145 6 084
    下载: 导出CSV
  • [1] 周恒, 张涵信. 有关近空间高超声速飞行器边界层转捩和湍流的两个问题[J]. 空气动力学学报, 2017, 35(2): 151-155. doi: 10.7638/kqdlxxb-2017.0016

    Zhou H, Zhang H X. Two problems in the transition and turbulence for near space hypersonic flying vehicles[J]. Acta Aerodynamica Sinica, 2017, 35(2): 151-155(in Chinese). doi: 10.7638/kqdlxxb-2017.0016
    [2] Spalart P R. Direct simulation of a turbulent boundary layer up to Rθ=1410[J]. Journal of Fluid Mechanics, 1988, 187: 61-98. http://adsabs.harvard.edu/abs/1988JFM...187...61S
    [3] Moin P, Mahesh K. Direct numerical simulation: a tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30: 539-578. http://www.ams.org/mathscinet-getitem?mr=1609753
    [4] Xu C, Zhang Z, den Toonder J M, et al. Origin of high kurtosis levels in the viscous sublayer: Direct numerical simulation and experiment[J]. Physics of Fluids, 1996, 8(7): 1938-1944. doi: 10.1063/1.868973
    [5] Li X L, Ma Y W, Fu D X. DNS of incompressible turbulent channel flow with upwind compact scheme on nonu-niform meshes[J]. Computational Fluid Dynamics Journal, 2000, 8(4): 536-543.
    [6] 黄章峰, 周恒, 罗纪生. 超音速平板边界层湍流的直接数值模拟及分析[J]. 中国科学G辑物理学力学天文学, 2006, 36(1): 46-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200601004.htm

    Huang Z F, Zhou H, Luo J S. Direct numerical simulation of a supersonic turbulent boundary layer on a flat plate and its analysis[J]. Science in China Series G Physics, Mechanics & Astronomy, 2006, 36(1): 46-58(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200601004.htm
    [7] 董明. Mach数为6的高超声速钝锥湍流边界层空间演化的直接数值模拟[J]. 空气动力学学报, 2009, 27(2): 199-205. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200902010.htm

    Dong M. Direct numerical simulation of a spatially evolving hypersonic blunt cone turbulent boundary layer at Mach 6[J]. Acta Aerodynamica Sinica, 2009, 27(2): 199-205(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200902010.htm
    [8] Pirozzoli S, Grasso F, Gatski T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids, 2004, 16(3): 530-545. doi: 10.1063/1.1637604
    [9] Gao H, Fu D X, Ma Y W, et al. Direct numerical simulation of supersonic turbulent boundary layer flow[J]. Chinese Physics Letters, 2005, 22(7): 1709-1712.
    [10] Li X L, Fu D X, Ma Y W, et al. Acoustic calculation for supersonic turbulent boundary layer flow[J]. Chinese Physics Letters, 2009, 26(9): 094701. http://www.cqvip.com/QK/84212X/200909/31479116.html
    [11] Schlatter P, Ramis Örlü R. Assessment of direct numerical simulation data of turbulent boundary layers[J]. Journal of Fluid Mechanics, 2010, 659: 116-126. http://journals.cambridge.org/abstract_S0022112010003113
    [12] 傅德薰, 马延文, 李新亮, 等. 可压缩湍流直接数值模拟[M]. 北京: 科学出版社, 2010.

    Fu D X, Ma Y W, Li X L, et al. Direct numerical simulations of compressible turbulence[M]. Beijing: Science Press, 2010(in Chinese).
    [13] Chong M S, Perry A E, Cantwell B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(5): 765-777.
    [14] Hunt J C, Wray A A, Moin P. Eddies, streams, and convergence zones in turbulent flows[C]. Proceedings of 1988 Summer Program Studying Turbulence Using Numerical Simulation Databases, California: NASA, 1988.
    [15] Jeong J, Hussain F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285: 69-94. http://www.researchgate.net/publication/231865270_Hussain_F_On_the_identification_of_a_vortex_JFM_285_69-94
    [16] Wu M, Martin M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4): 879-889. doi: 10.2514/1.27021
    [17] White F M. Viscous fluid flow[M]. New York: McGraw-Hill, 1974.
    [18] van Driest E R. The problem of aerodynamic heating[J]. Aeronautical Engineering Review, 1956, 15(10): 26-41. http://ci.nii.ac.jp/naid/10004538407
    [19] Hopkins E J, Inouye M. An evaluation of theories for predicting turbulent skin friction and heat transfer on flat plates at supersonic and hypersonic Mach numbers[J]. AIAA Journal, 1971, 9(6): 993-1003. doi: 10.2514/3.6323
    [20] Jiménez J, Hoyas S, Simens M P, et al. Turbulent boundary layers and channels at moderate Reynolds num-bers[J]. Journal of Fluid Mechanics, 2010, 657: 335-360. doi: 10.1017/s0022112010001370
    [21] Smith A J, Matheson N, Joubert P N. Low-Reynolds-number turbulent boundary layers in zero and favorable pressure gradients[J]. Journal of Ship Research, 1983, 27(3): 147-157. http://www.researchgate.net/publication/279559804_Low-Reynolds-number_turbulent_boundary_layers_in_zero_and_favorable_pressure_gradients
    [22] Fukagata K, Iwamoto K, Kasagi N. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows[J]. Physics of Fluids, 2002, 14(11): L73-L76. doi: 10.1063/1.1516779
    [23] Mehdi F, White C M. Integral of the skin friction coefficient suitable for experimental data[J]. Experiments in Fluids, 2011, 50: 43-51. http://meetings.aps.org/Meeting/DFD09/Event/111717
    [24] Renard N, Deck S. A theoretical decomposition of mean skin friction generation into physical phenomen across the boundary layer[J]. Journal of Fluid Mechanics, 2016, 790: 339-367.
    [25] Li W P, Fan Y T, Modesti D, et al. Decomposition of the mean skin-friction drag in compressible turbulent channel flows[J]. Journal of Fluid Mechanics, 2018, 854: 449-473. http://journals.cambridge.org/abstract_S0022112019004993
    [26] Wu X H, Moin P. Transitional and turbulent boundary layer with heat transfer[J]. Physics of Fluids, 2010, 22(8): 085105. doi: 10.1063/1.3475816
    [27] Pirozzoli S, Bernardini M. Turbulence in supersonic boundary layer at moderate Reynolds number[J]. Journal of Fluid Mechanics, 2011, 688: 120-168. http://journals.cambridge.org/abstract_S0022112011003685
    [28] 吴晓帅. 超声速湍流边界层壁面曲率效应的直接数值模拟研究[D]. 长沙: 国防科技大学, 2019.

    Wu X S. Direct numerical simulations of supersonic turbulent boundary layers subjected to surface curvature effects[D]. Changsha: National University of Defense Technology, 2019(in Chinese).
    [29] Kline S J, Moffatt H K, Morkovin M V. Report on the AFOSR-IFP-Stanford conference on computation of turbulent boundary layers[J]. Journal of Fluid Mechanics, 1969, 36(3): 481-484. http://www.researchgate.net/publication/285660029_Computation_of_turbulent_boundary_layers-1968_AFOSR-IFP_Stanford_Conference_Proc_1968_Conf_Thermo_Sci
    [30] Huang Z F, Zhou H, Luo J S. The investigation of coherent structures in the wall region of a supersonic turbulent boundary layer based on DNS database[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2007, 50(3): 348-356. http://www.cnki.com.cn/Article/CJFDTotal-JGXG200703011.htm
    [31] He L, Yi S H, Zhao Y X, et al. Visualization of coherent structures in a supersonic flat-plate boundary layer[J]. Chinese Science Bulletin, 2011, 56(6): 489-494.
    [32] Hutchins N, Marusic I. Evidence of very long meandering features in the logarithmic region of turbulent boundary layers[J]. Journal of Fluid Mechanics, 2007, 579: 1-28. doi: 10.1017/S0022112006003946
    [33] Chen J, Hussain F, Pei J, et al. Velocity-vorticity correlation structure in turbulent channel flow[J]. Journal of Fluid Mechanics, 2014, 742: 291-307.
    [34] Shadden S C, Lekien F, Marsden J E. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows[J]. Physica D: Nonlinear Phenomena, 2005, 212: 271-304. http://www.sciencedirect.com/science/article/pii/S0167278905004446
    [35] Haller G. Lagrangian coherent structures from approxi-mate velocity data[J]. Physics of Fluids, 2002, 14: 1851-1861. http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1063/1.1477449&rfr_id=trans/tg/2007/06/ttg2007061464.htm
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  62
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-28
  • 修回日期:  2019-11-29
  • 发布日期:  2021-05-20
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回