主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Ludwieg管的高超声速边界层转捩实验

黄冉冉 司马学昊 成江逸 赵家权 吴杰

黄冉冉, 司马学昊, 成江逸, 赵家权, 吴杰. 基于Ludwieg管的高超声速边界层转捩实验[J]. 气体物理, 2021, 6(5): 51-61. doi: 10.19527/j.cnki.2096-1642.0901
引用本文: 黄冉冉, 司马学昊, 成江逸, 赵家权, 吴杰. 基于Ludwieg管的高超声速边界层转捩实验[J]. 气体物理, 2021, 6(5): 51-61. doi: 10.19527/j.cnki.2096-1642.0901
HUANG Ran-ran, SIMA Xue-hao, CHENG Jiang-yi, ZHAO Jia-quan, WU Jie. Hypersonic Boundary-Layer Transition Experiments in Ludwieg Tube[J]. PHYSICS OF GASES, 2021, 6(5): 51-61. doi: 10.19527/j.cnki.2096-1642.0901
Citation: HUANG Ran-ran, SIMA Xue-hao, CHENG Jiang-yi, ZHAO Jia-quan, WU Jie. Hypersonic Boundary-Layer Transition Experiments in Ludwieg Tube[J]. PHYSICS OF GASES, 2021, 6(5): 51-61. doi: 10.19527/j.cnki.2096-1642.0901

基于Ludwieg管的高超声速边界层转捩实验

doi: 10.19527/j.cnki.2096-1642.0901
基金项目: 

国家自然基金青年项目 11702106

中央高校基本科研业务费专项资金 2019kfyXKJC001

国家数值风洞 2018-ZT1A03

详细信息
    作者简介:

    黄冉冉(1995-)女, 博士, 主要研究方向为高超声速空气动力学.E-mail: ranran@hust.edu.cn

    通讯作者:

    吴杰(1986-)男, 副教授, 主要研究方向为超声速/高超声速空气动力学、风洞设计与实验测量技术、超声速射流与噪声控制.E-mail: jiewu@hust.edu.cn

  • 中图分类号: V211.7

Hypersonic Boundary-Layer Transition Experiments in Ludwieg Tube

  • 摘要:

    高超声速边界层层/湍流转捩是高超声速飞行器气动力和气动热设计中的难点和热点问题.为了降低开展高超声速边界层不稳定性与转捩实验研究的门槛,研究基于Ludwieg管原理设计并建造了一座Mach 6高超声速管风洞,重点对Ludwieg管风洞的启动和运行过程开展了数值模拟,分析了储气段弯管布局对试验段流场的影响;之后,对该高超声速风洞的自由来流品质进行了静态和动态的标定,验证了风洞的设计Mach数,并给出了流场的动态扰动特征;最后,基于7°半张角尖锥标模开展了高超声速边界层转捩实验,通过表面齐平式安装的高频PCB传感器获得边界层不稳定波,分析了高超声速边界层不稳定波的演化特征.以上工作表明,Ludwieg管相对常规高超声速风洞具有建设和运行成本低、运行效率高、流场品质好等优点,适合开展高超声速边界层转捩等基础实验研究.

     

  • 图  1  Ludwieg式管风洞的运行原理图[11]

    Figure  1.  Mechanism of the Ludwieg tube tunnel[11]

    图  2  华中科技大学Mach 6 Ludwieg管风洞Laval喷管型线

    Figure  2.  HUST Mach 6 Ludwieg tube(HLT) contour

    图  3  Ludwieg管半模网格

    Figure  3.  Half model grids of Ludwieg tube

    图  4  网格独立性验证

    Figure  4.  Mesh independence verification

    图  5  不同数值求解器中心线Mach数的比较

    Figure  5.  Comparison of central line Mach number with different numerical solvers

    图  6  Ludwieg管启动过程密度梯度$\sqrt{\left(\frac{\mathrm{d} \rho}{\mathrm{d} x}\right)^{2}+\left(\frac{\mathrm{d} \rho}{\mathrm{d} y}\right)^{2}}$云图

    Figure  6.  Density gradient contour for the starting process of Ludwieg tube

    图  7  Ludwieg管启动过程Mach数

    Figure  7.  Mach number for the starting process of Ludwieg tube

    图  8  喷管Mach数云图

    Figure  8.  Mach number contour of tunnel

    图  9  喷管出口Mach数分布

    Figure  9.  Mach number slice across the test section

    图  10  Ludwieg管风洞运行过程密度梯度$\sqrt{\left(\frac{\mathrm{d} \rho}{\mathrm{d} x}\right)^{2}+\left(\frac{\mathrm{d} \rho}{\mathrm{d} y}\right)^{2}}$云图

    Figure  10.  Density gradient contour of HLT working process

    图  11  风洞运行时储气段出口压力随时间变化曲线

    Figure  11.  Time trace of storage tube outlet pressure during running process

    图  12  华中科技大学Φ0.25 m Mach 6 Ludwieg管风洞

    Figure  12.  Mach 6 HUST-HLT

    图  13  纹影光路图

    Figure  13.  Schlieren optical path diagram

    图  14  储气段压力与试验段Pitot管压力随时间的变化

    Figure  14.  Time trace of storage tube and Pitot probe pressure in test section

    图  15  CFD与Pitot管探头激波结构实验比较

    Figure  15.  Shock structure comparison between CFD and experiments for Pitot probe

    图  16  HHK-6、HLB和HUST风洞在5~100 kHz之间PCB传感器的归一化压力波动[24]

    Figure  16.  Normalized pressure fluctuations from PCB sensor from 5 kHz to 100 kHz in HHK-6, HLB and HUST

    图  17  从PCB得到的压力波动PSD[24]

    Figure  17.  PSD of pressure fluctuation obtained from PCB

    图  18  尖锥模型及测点位置

    Figure  18.  Cone model and measuring point locations

    图  19  PCB压力传感器的功率谱分布对比

    Figure  19.  Comparison of power spectrum distribution of PCB pressure sensor

    图  20  第二模态波包传播情况

    Figure  20.  Propagation of the second modal wave packet

    图  21  压力信号互相关曲线

    Figure  21.  Cross-correlation of pressure signals

  • [1] Fedorov A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43: 79-95. doi: 10.1146/annurev-fluid-122109-160750
    [2] 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311-337. doi: 10.7638/kqdlxxb-2017.0030

    Chen J Q, Tu G H, Zhang Y F, et al. Hypersonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-337(in Chinese). doi: 10.7638/kqdlxxb-2017.0030
    [3] Bertin J J, Cummings R M. Critical hypersonic aerothermodynamic phenomena[J]. Annual Review of Fluid Mechanics, 2006, 38: 129-157. doi: 10.1146/annurev.fluid.38.050304.092041
    [4] Anderson J D. Hypersonic and high temperature gas dynamics[M]. AIAA Education Series, 2000.
    [5] 刘向宏, 赖光伟, 吴杰. 高超声速边界层转捩实验综述[J]. 空气动力学学报, 2018, 36(2): 196-212. doi: 10.7638/kqdlxxb-2018.0017

    Liu X H, Lai G W, Wu J. Boundary-layer transition experiments in hypersonic flow[J]. Acta Aerodynamica Sinica, 2018, 36(2): 196-212(in Chinese). doi: 10.7638/kqdlxxb-2018.0017
    [6] Bertin J J, Cummings R M. Fifty years of hypersonics: where we've been, where we're going[J]. Progress in Aerospace Sciences, 2003, 39(6-7): 511-536. doi: 10.1016/S0376-0421(03)00079-4
    [7] Cummings R M. Numerical simulation of hypersonic flows[J]. Journal of Spacecraft and Rockets, 2015, 52(1): 15-16. doi: 10.2514/1.A33030
    [8] Ludwieg H. Der rohrwindkanal[J]. Zeitschrift für Flugwissenschaften, 1955, 3(7): 206-216.
    [9] Radespiel R, Estorf M, Heitmann D, et al. Hypersonic Ludwieg tube[M]. Experimental Methods of Shock Wave Research, Springer, 2016: 433-458.
    [10] Cummings R, McLaughlin T. Hypersonic Ludwieg tube design and future usage at the US Air force academy[R]. AIAA 2012-0734, 2012.
    [11] Ludwieg H. Der Rohrwindkanal[J]. Zeitschrift für Flugwissenschaften, 1955, 3(7): 206-216.
    [12] Wu J, Radespiel R. Tandem nozzle supersonic wind tunnel design[J]. International Journal of Engineering Systems Modelling and Simulation, 2013, 5(1/2/3): 8-18. doi: 10.1504/IJESMS.2013.052369
    [13] Sivells J C. A computer program for the aerodynamic design of axisymmetric and planar nozzles for supersonic and hypersonic wind tunnels[J]. DTIC Document, 1978: 1-151.
    [14] Palacios F, Colonno M R, Aranake A C, et al. Stanford University Unstructured (SU2): An Open-Source integrated computational environment for multi-physics simulation and design[R]. AIAA 2013-0287, 2013.
    [15] Palacios F, Economon T D, Aranake A C, et al. Stanford University Unstructured (SU2): analysis and design technology for turbulent flows[R]. AIAA 2014-0243, 2014.
    [16] Menter F. R. Review of the shear-stress transport turbulence model experience from an industrial perspective[J]. International Journal of Computational Fluid Dynamics, 2009, 23(4): 305-316. doi: 10.1080/10618560902773387
    [17] Menter F R, Kuntz M, Langtry R. Ten years of industrial experience with the SST turbulence model[J]. Turbu-lence, Heat and Mass Transfer, 2003(4): 625-632.
    [18] Liou M S. A Sequel to AUSM: AUSM+[J]. Journal of Computational Physics, 1996, 129(2): 364-382. doi: 10.1006/jcph.1996.0256
    [19] Liou M S, Steffen C J Jr. A new flux splitting scheme[J]. Journal of Computational Physics, 1993, 107(1): 23-39. doi: 10.1006/jcph.1993.1122
    [20] Wu J, Liu X J, Radespiel R. RANS simulations of a tandem nozzle supersonic wind tunnel[J]. Aerospace Scien-ce and Technology, 2016, 49: 215-224. doi: 10.1016/j.ast.2015.11.041
    [21] Huang J J, Duan L, Choudhari M M. Direct numerical simulation of acoustic noise generation from the nozzle wall of a hypersonic wind tunnel[R]. AIAA 2017-3631, 2017.
    [22] Masutti D, Spinosa E, Chazot O, et al. Disturbance level characterization of a hypersonic blowdown facility[J]. AIAA Journal, 2012, 50(12): 2720-2730. doi: 10.2514/1.J051502
    [23] Laufer J. Aerodynamic noise in supersonic wind tunnels[J]. Journal of the Aerospace Sciences, 1961, 28(9): 685-692. doi: 10.2514/8.9150
    [24] Munoz F, Wu J, Radespiel R, et al. Freestream disturbances characterization in Ludwieg tubes at Mach 6[R]. AIAA 2019-0878, 2019.
    [25] Stetson K, Kimmel R. On hypersonic boundary-layer stability[R]. AIAA 92-0737, 1992.
  • 加载中
图(21)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  53
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-11
  • 修回日期:  2021-03-24
  • 刊出日期:  2021-11-17

目录

    /

    返回文章
    返回