主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滑动弧裂解CO2机理

杨锐 游滨川 刘潇 杨家龙 郑洪涛 马彪

杨锐, 游滨川, 刘潇, 杨家龙, 郑洪涛, 马彪. 滑动弧裂解CO2机理[J]. 气体物理, 2022, 7(1): 53-62. doi: 10.19527/j.cnki.2096-1642.0883
引用本文: 杨锐, 游滨川, 刘潇, 杨家龙, 郑洪涛, 马彪. 滑动弧裂解CO2机理[J]. 气体物理, 2022, 7(1): 53-62. doi: 10.19527/j.cnki.2096-1642.0883
YANG Rui, YOU Bin-chuan, LIU Xiao, YANG Jia-long, ZHENG Hong-tao, MA Biao. Mechanism of CO2 Cracking by Gliding Arc[J]. PHYSICS OF GASES, 2022, 7(1): 53-62. doi: 10.19527/j.cnki.2096-1642.0883
Citation: YANG Rui, YOU Bin-chuan, LIU Xiao, YANG Jia-long, ZHENG Hong-tao, MA Biao. Mechanism of CO2 Cracking by Gliding Arc[J]. PHYSICS OF GASES, 2022, 7(1): 53-62. doi: 10.19527/j.cnki.2096-1642.0883

滑动弧裂解CO2机理

doi: 10.19527/j.cnki.2096-1642.0883
基金项目: 

黑龙江省博士后资助经费 LBH-Z18049

详细信息
    作者简介:

    杨锐(1995-)男, 硕士, 主要研究方向为等离子体裂解燃料应用. E-mail: 1501710726@qq.com

    通讯作者:

    刘潇(1988-)男, 副教授, 研究等离子点火和助燃、燃气轮机低排放燃烧特性. E-mail: liuxiao_heu@163.com

  • 中图分类号: TK16

Mechanism of CO2 Cracking by Gliding Arc

  • 摘要: 建立了一维滑动弧裂解CO2的反应机理模型. 利用对流冷却的特征频率计算横向气流对流引起的等离子体组分损失. 将等离子体密度和温度的数值模拟结果与文献中滑动电弧等离子体反应器的实验数据进行了对比,吻合较好. 模拟结果表明,滑动弧裂解CO2会产生大量O和O2等活性助燃粒子以及可燃的CO. 随着对流冷却特征频率的增加,放电过程中最大电子数密度和电子温度减小,CO2转化率下降. 在整个CO2裂解机制中e+CO2→e+CO+O的贡献最大,准稳态中贡献率为90.63%,瞬态中贡献率为98.43%. 反应CO+O+M→CO2+M对CO2生成的贡献率最大. 在实际应用中,为提高CO2转化率,可以通过增大放电电流,增大e+CO2→e+CO+O的反应速率,同时选择合适的气体流量,避免过大的速度引起CO2转化率下降.

     

  • 图  1  一维模拟区域

    Figure  1.  One dimensional simulation area

    图  2  滑动弧裂解CO2示意图

    Figure  2.  Schematic diagram of CO2 cracking by gliding arc

    图  3  不同特征冷却频率下电子数密度和电子温度随位置的演化

    Figure  3.  Evolution of electron number density and electron temperature with different cooling frequencies

    图  4  CO2消耗反应速率随位置的演化

    Figure  4.  Evolution of CO2 consumption reaction rate with location

    图  5  CO2生成反应速率随位置的演化

    Figure  5.  Evolution of CO2 formation rate with location

    图  6  O2生成和消耗反应速率随位置的演化

    Figure  6.  Evolution of reaction rate of O2 generation and consumption with location

    图  7  CO2数密度随位置的演化

    Figure  7.  Evolution of CO2 number density with location

    图  8  活性粒子数密度随位置的演化

    Figure  8.  Evolution of active particle number density with location

    图  9  电子数密度和电子温度随时间的演化

    Figure  9.  Evolution of electron number density and electron temperature with time

    图  10  不同特征冷却频率下的最大电子数密度和电子温度

    Figure  10.  Maximum electron number density and electron temperature at different cooling frequencies

    图  11  CO2消耗反应速率随时间的演化

    Figure  11.  Evolution of CO2 consumption reaction rate with time

    图  12  CO2生成反应速率随时间的演化

    Figure  12.  Evolution of CO2 formation rate with time

    图  13  O2生成和消耗反应速率随位置的演化

    Figure  13.  Evolution of reaction rate of O2 generation and consumption with location

    图  14  不同特征冷却频率下CO2数密度随时间的演化

    Figure  14.  Evolution of CO2 number density with time at different cooling frequencies

    图  15  不同特征冷却频率下CO2转化率

    Figure  15.  CO2 conversion rate at different cooling frequencies

    图  16  活性粒子数密度随时间的演化

    Figure  16.  Evolution of active particle number density with time

    表  1  模型中包含的粒子

    Table  1.   Particles contained in the model

    neutral species and radicals charged particles
    CO2, CO, O, C, O2 CO2+, e
    下载: 导出CSV

    表  2  模型中电子碰撞反应

    Table  2.   Electron collision reactions

    reaction reaction rate reference No.
    e+CO2→e+CO2 δ [23] R1
    e+C→e+C δ [25] R2
    e+CO→e+CO δ [25] R3
    e+O→e+O δ [24] R4
    e+O2→e+O2 δ [24] R5
    e+CO2→e+e+CO2+ δ [23] R6
    e+CO2→e+CO+O δ [23] R7
    e+O2→e+O+O δ [24] R8
    e+CO→e+C+O δ [25] R9
    e+e+CO2+→CO2 δ [26] R10
    下载: 导出CSV

    表  3  模型中中性粒子反应

    Table  3.   Neutral particle reactions

    reaction reaction rate reference No.
    M+CO2→M+CO+O 4.39×10-7exp
    (-65 000/Tg)
    [6] R11
    O+CO2→O2+CO 7.77×10-12exp
    (-16 600/Tg)
    [6] R12
    CO+O+M→CO2+M 8.2×10-34exp
    (-1 560/Tg)
    [27] R13
    O2+CO→CO2+O 1.28×10-12exp
    (-12 800/Tg)
    [6] R14
    C+CO2→CO+CO 1.0×10-15 [28] R15
    O2+C→CO+O 3.0×10-11 [27] R16
    CO+M→C+O+M 1.52×10-4exp
    (-12 800/Tg)
    [29] R17
    C+O+M→CO+M 2.14×10-29exp
    (-2 114/Tg)
    [26] R18
    O+O+M→O2+M 1.27×10-32exp
    (-170/Tg)
    [30] R19
    下载: 导出CSV

    表  4  各反应对CO2裂解贡献率

    Table  4.   Contribution rate of each reaction to CO2 cracking

    No. reaction relative contribution rate
    R7 e+CO2→e+CO+O 90.63%
    R11 M+CO2→M+CO+O < 0.01%
    R12 O+CO2→O2+CO 0.11%
    R15 C+CO2→CO+CO 9.26%
    下载: 导出CSV

    表  5  各反应对CO2裂解贡献率

    Table  5.   Contribution rate of each reaction to CO2 cracking

    No. reaction relative contribution rate
    R7 e+CO2→e+CO+O 98.43%
    R11 M+CO2→M+CO+O < 0.01%
    R12 O+CO2→O2+CO < 0.01%
    R15 C+CO2→CO+CO 1.57%
    下载: 导出CSV
  • [1] 赵黛青, 夏亮, 何立波. 低热值燃料稳定燃烧的研究现状与进展[J]. 世界科技研究与发展, 2005, 27(5): 33-39. doi: 10.3969/j.issn.1006-6055.2005.05.006

    Zhao D Q, Xia L, He L B. Research and development of stable combustion using low heat value fuel[J]. World Sci-Tech R&D, 2005, 27(5): 33-39(in Chinese). doi: 10.3969/j.issn.1006-6055.2005.05.006
    [2] 刘日新, 刘七新, 饶文涛. 高炉煤气在连续加热炉上的应用[J]. 工业加热, 2003, 32(5): 57-58. doi: 10.3969/j.issn.1002-1639.2003.05.018

    Liu R X, Liu Q X, Rao W T. The applications of blast furnace gas to continuous-heating furnaces[J]. Industrial Heating, 2003, 32(5): 57-58(in Chinese). doi: 10.3969/j.issn.1002-1639.2003.05.018
    [3] 王松岭, 董君, 陈海平, 等. 高炉煤气燃气轮机联合循环的发展现状与前景[J]. 燃气轮机技术, 2005, 18(4): 22-24, 38. doi: 10.3969/j.issn.1009-2889.2005.04.005

    Wang S L, Dong J, Chen H P, et al. The development situation and prospects of blast-furnace-gas-fired gas turbine combined cycle[J]. Gas Turbine Technology, 2005, 18(4): 22-24, 38(in Chinese). doi: 10.3969/j.issn.1009-2889.2005.04.005
    [4] 李沛泽. 低热值燃料点火与助燃方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.

    Li P Z. Research on low heat value fuel ignition and combustion enhancement[D]. Harbin: Harbin Engineering University, 2019(in Chinese).
    [5] Czernichowski A. Gliding arc: applications to engineering and environment control[J]. Pure and Applied Chemi-stry, 1994, 66(6): 1301-1310. doi: 10.1351/pac199466061301
    [6] Fridman A, Nester S, Kennedy L A, et al. Gliding arc gas discharge[J]. Progress in Energy and Combustion Science, 1999, 25(2): 211-231. doi: 10.1016/S0360-1285(98)00021-5
    [7] Richard F, Cormier J M, Pellerin S, et al. Gliding arcs fluctuations and arc root displacement[J]. High Tempe-rature Material Processes: An International Quarterly of High-Technology Plasma Processes, 1997, 1(2): 239-248. doi: 10.1615/HighTempMatProc.v1.i2.80
    [8] Du C M, Mo J M, Tang J, et al. Plasma reforming of bio-ethanol for hydrogen rich gas production[J]. Applied Energy, 2014, 133: 70-79. doi: 10.1016/j.apenergy.2014.07.088
    [9] Tu X, Whitehead J C. Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: co-generation of syngas and carbon nanomaterials[J]. International Journal of Hydrogen Energy, 2014, 39(18): 9658-9669. doi: 10.1016/j.ijhydene.2014.04.073
    [10] Czernichowski A, Nassar H, Ranaivosoloarimanana A, et al. Spectral and electrical diagnostics of gliding arc[J]. Acta Physica Polonica A, 1996, 89(5/6): 595-603.
    [11] Mutaf-Yardimci O, Saveliev A V, Fridman A A, et al. Thermal and nonthermal regimes of gliding arc discharge in air flow[J]. Journal of Applied Physics, 2000, 87(4): 1632-1641. doi: 10.1063/1.372071
    [12] Tu X, Gallon H J, Whitehead J C. Dynamic behavior of an atmospheric argon gliding arc plasma[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2900-2901. doi: 10.1109/TPS.2011.2150247
    [13] Kustova E V, Nagnibeda E A. Transport properties of a reacting gas mixture with strong vibrational and chemical nonequilibrium[J]. Chemical Physics, 1998, 233(1): 57-75. doi: 10.1016/S0301-0104(98)00092-5
    [14] Kustova E V, Nagnibeda E A, Chauvin A H, et al. State-to-state nonequilibrium reaction rates[J]. Chemical Physics, 1999, 248(2/3): 221-232.
    [15] Rusanov V D, Fridman A A, Sholin G V. The physics of a chemically active plasma with nonequilibrium vibrational excitation of molecules[J]. Soviet Physics Uspekhi, 1981, 24(6): 447-474. doi: 10.1070/PU1981v024n06ABEH004884
    [16] Hokazono H, Obara M, Midorikawa K, et al. Theoretical operational life study of the closed-cycle transversely excited atmospheric CO2 laser[J]. Journal of Applied Physics, 1991, 69(10): 6850-6868. doi: 10.1063/1.347675
    [17] Aerts R, Martens T, Bogaerts A. Influence of vibrational states on CO2 splitting by dielectric barrier discharges[J]. The Journal of Physical Chemistry C, 2012, 116(44): 23257-23273. doi: 10.1021/jp307525t
    [18] 吴帆. 等离子体法分解CO2的反应动力学研究[D]. 大连: 大连理工大学, 2017.

    Wu F. The reaction kinetics study of CO2 decomposition in plasma[D]. Dalian: Dalian University of Technology, 2017(in Chinese).
    [19] Pietanza L D, Colonna G, D'Ammando G, et al. Time-dependent coupling of electron energy distribution function, vibrational kinetics of the asymmetric mode of CO2 and dissociation, ionization and electronic excitation kinetics under discharge and post-discharge conditions[J]. Plasma Physics and Controlled Fusion, 2016, 59(1): 014035.
    [20] Wang W Z, Berthelot A, Kolev S, et al. CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model[J]. Plasma Sources Science and Technology, 2016, 25(6): 065012. doi: 10.1088/0963-0252/25/6/065012
    [21] Pellerin S, Richard F, Chapelle J, et al. Heat string model of bi-dimensional DC Glidarc[J]. Journal of Physics D: Applied Physics, 2000, 33(19): 2407-2419. doi: 10.1088/0022-3727/33/19/311
    [22] Richard F, Cormier J M, Pellerin S, et al. Physical study of a gliding arc discharge[J]. Journal of Applied Physics, 1996, 79(5): 2245-2250. doi: 10.1063/1.361188
    [23] Lowke J J, Phelps A V, Irwin B W. Predicted electron transport coefficients and operating characteristics of CO2-N2-He laser mixtures[J]. Journal of Applied Physics, 1973, 44(10): 4664-4671. doi: 10.1063/1.1662017
    [24] Lawton S A, Phelps A V. Excitation of the b1Σg+ state of O2 by low energy electrons[J]. Chemical Physic, 1978, 69(3): 1055-1068.
    [25] Land J E. Electron scattering cross sections for momentum transfer and inelastic excitation in carbon mo-noxide[J]. Journal of Applied Physics, 1978, 49(12): 5716-5721. doi: 10.1063/1.324589
    [26] Beuthe T G, Chang J S. Chemical kinetic modelling of non-equilibrium Ar-CO2 thermal plasmas[J]. Japanese Journal of Applied Physics, 1997, 36: 4997. doi: 10.1143/JJAP.36.4997
    [27] Cenian A, Chernukho A, Borodin V, et al. Modeling of plasma-chemical reactions in gas mixture of CO2 lasers I. gas decomposition in pure CO2 glow discharge[J]. Contributions To Plasma Physics, 1994, 34(1): 25-37. doi: 10.1002/ctpp.2150340105
    [28] Cenian A, Chernukho A, Borodin V. Modeling of plasma-chemical reactions in gas mixture of CO2 lasers. Ⅱ. theoretical model and its verification[J]. Contributions To Plasma Physics, 1995, 35(3): 273-296. doi: 10.1002/ctpp.2150350309
    [29] Mick H J, Burmeister M, Roth P. Atomic resonance absorption spectroscopy measurements on high-temperature CO dissociation kinetics[J]. AIAA Journal, 1993, 31(4): 671-676. doi: 10.2514/3.11602
    [30] Hadj-Ziane S, Held B, Pignolet P, et al. Ozone generation in an oxygen-fed wire-to-cylinder ozonizer at atmospheric pressure[J]. Journal of Physics D: Hadj-Ziane, 1992, 25(4): 677-685. doi: 10.1088/0022-3727/25/4/014
    [31] Wu A J, Yan J H, Zhang H, et al. Study of the dry methane reforming process using a rotating gliding arc reactor[J]. International Journal of Hydrogen Energy, 2014, 39(31): 17656-17670. doi: 10.1016/j.ijhydene.2014.08.036
    [32] Zhao T L, Xu Y, Song Y H, et al. Determination of vibrational and rotational temperatures in a gliding arc discharge by using overlapped molecular emission spectra[J]. Journal of Physics D: Applied Physics, 2013, 46(34): 345201. doi: 10.1088/0022-3727/46/34/345201
    [33] Gangoli S P, Gutsol A F, Fridman A A. A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: Ⅰ. Design and diagnostics[J]. Plasma Sources Science and Technology, 2010, 19(6): 065003. doi: 10.1088/0963-0252/19/6/065003
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  134
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-04
  • 修回日期:  2021-05-06
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回