主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可调谐二极管激光吸收光谱诊断技术:原理和应用

余西龙 曾徽 林鑫 李飞 张少华 刘立拓

余西龙, 曾徽, 林鑫, 李飞, 张少华, 刘立拓. 可调谐二极管激光吸收光谱诊断技术:原理和应用[J]. 气体物理, 2016, 1(5): 52-63.
引用本文: 余西龙, 曾徽, 林鑫, 李飞, 张少华, 刘立拓. 可调谐二极管激光吸收光谱诊断技术:原理和应用[J]. 气体物理, 2016, 1(5): 52-63.
YU Xi-long, ZENG Hui, LIN Xin, LI Fei, ZHANG Shao-hua, LIU Li-tuo. Tunable Diode Laser Absorption Spectroscopy : Principle and Application[J]. PHYSICS OF GASES, 2016, 1(5): 52-63.
Citation: YU Xi-long, ZENG Hui, LIN Xin, LI Fei, ZHANG Shao-hua, LIU Li-tuo. Tunable Diode Laser Absorption Spectroscopy : Principle and Application[J]. PHYSICS OF GASES, 2016, 1(5): 52-63.

可调谐二极管激光吸收光谱诊断技术:原理和应用

详细信息
    作者简介:

    余西龙(1971-)男, 陕西西安蓝田, 中国科学院力学研究所, 研究员, 博士生导师.主要研究方向为先进激光光谱诊断技术超声速燃烧与高温非平衡流动.通信地址:北京北四环西路15号(100190). Email : xlyu@imech.ac.cn

  • 中图分类号: V211.7

Tunable Diode Laser Absorption Spectroscopy : Principle and Application

  • 摘要: 可调谐二极管激光吸收光谱技术是一种非接触的光谱诊断技术, 已经广泛应用于高温气动研究中.文章对吸收光谱的发展和应用于高温反应环境温度和组分浓度的测量进行了回顾.对不同的吸收测量策略以及相应的系统组成进行了详细介绍, 最后介绍了应用吸收光谱技术研究超声速燃烧火星再入以及空间推进系统的详细结果.

     

  • 图  1  吸收光谱测量示意图

    Figure  1.  Schematic of absorption measurement arrangemen

    图  2  7185.60cm-1谱线Lorentz-Gauss-Voigt吸收线型比较, XH2O=0.05, P=1bar, T=1500K

    Figure  2.  Absorption line shapes of H2O 7185.60cm-1 transition, XH2O=0.05, P=1bar, T=1500K

    图  3  波长扫描直接吸收法的实验示意图

    Figure  3.  Schematic of wavelength-scanning direct absorption measurement arrangement

    图  4  波长扫描直接吸收实验信号图

    Figure  4.  Measured signal of wavelength-scanning direct absorption scheme

    图  5  7185.60cm-1H2O吸收跃迁Doppler半高全宽随温度的变化

    Figure  5.  FWHM of Doppler line broadening for H2O 7185.60cm-1 transition versus temperature

    图  6  波长调制实验示意图

    Figure  6.  Schematic of wavelength modulation absorption measurement arrangement

    图  7  TDLAS速度测量原理示意图

    Figure  7.  Schematic of optical arrangement for velocity measurement with TDLAS

    图  8  测量系统架构

    Figure  8.  Optical layout of the TDLAS system

    图  9  超燃直联台多光路吸收光谱测量系统示意图

    Figure  9.  Schematic of the direct-connected scramjet test facility and the laser beams collocation

    图  10  利用TDLAS系统获得的超燃燃烧室的温度H2O分压速度和Mach数的分布(M=2.5, C2H4, Φ 0.45)

    Figure  10.  Distributions of static temperature, partial pressure of water vapor, velocity, and Mach number along the vertical location near the cavity(M=2.5, C2H4, Φ 0.45)

    图  11  激波波后CO吸收测量实验方案

    Figure  11.  Schematic diagram of the experimental set-up of the shock tube and the optical instruments arrangement

    图  12  透射光强随时间的变化

    Figure  12.  Transmitted light intensities versus times

    图  13  激波波后温度和CO2335.778nm吸收线积分吸收率随时间的变化(实验工况: P1=200Pa, Vshock = 6.31±0.11km/s)

    Figure  13.  Evolutions of the CO integrated absorbance and temperatures behind the shock wave (experiment : P1=200Pa, Vshock= 6.31 ±0.11km/s)

    图  1  ADN基单组元推力器和TDLAS测量系统

    Figure  1.  Schematic of the ADN based monopropellant thruster and TDLAS measurement arrangement

    图  15  喷注压12bar时1N推力器脉冲工作状态下的N2O, NO与CO浓度随时间的变化(电磁阀闭合时间为100 ms)

    Figure  15.  Measured concentrations of N2O, CO, NO and in the combustion chamber for pulse-mode firing (injection pressure 12bar)

  • [1] Hanson R K, Kuntz P A, Kruger C H. High-resolution spectroscopy of combustion gases using a tunable IR diode laser[J]. Applied Optics, 1977, 16(8) : 2045-2048. doi: 10.1364/AO.16.002045
    [2] Namjou K, Cai S, Whittaker E A, et al. Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser[J]. Optics Letters, 1998, 23(3) : 219-221. doi: 10.1364/OL.23.000219
    [3] Allen M G. Diode laser absorption sensors for gas-dynamic and combustion flows[J]. Measurement Science and Technology, 1998, 9(4) : 545-562. doi: 10.1088/0957-0233/9/4/001
    [4] Liu J T, Rieker G B, Jeffries J B, et al. Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor[J]. Applied Optics, 2005, 44(31) : 6701-6711. doi: 10.1364/AO.44.006701
    [5] Schultz I A, Goldenstein C S, Strand C L, et al. Hypersonic scramjet testing via diode laser absorption in a reflected shock tunnel[J]. Journal of Propulsion and Power, 2014, 30(6) : 1586-1594. doi: 10.2514/1.B35220
    [6] Griffiths A D, Houwing A F. Diode laser absorption spectroscopy of water vapor in a scramjet combustor[J]. Applied Optics, 2005, 44(31) : 6653-6659. doi: 10.1364/AO.44.006653
    [7] Rieker G B, Jeffries J B, Hanson R K, et al. Diode laser-based detection of combustor instabilities with application to a scramjet engine[J]. Proceedings of the Combustion Institute, 2009, 32(1) : 831-838. doi: 10.1016/j.proci.2008.06.114
    [8] Li F, Yu X L, Gu H B, et al. Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors[J]. Applied Optics, 2011, 50(36) : 6697-6707. doi: 10.1364/AO.50.006697
    [9] Schultz I A, Goldenstein C S, Jeffries J B, et al. Spatially resolved water measurements in a scramjet combustor using diode laser absorption[J]. Journal of Propulsion and Power, 2014, 30(6) : 1551-1558. doi: 10.2514/1.B35219
    [10] Schultz I A, Goldenstein C S, Jeffries J B, et al. Diode laser absorption sensor for combustion progress in a model scramjet[J]. Journal of Propulsion and Power, 2014, 30(3) : 550-557. doi: 10.2514/1.B34905
    [11] Schultz I A, Goldenstein C S, Spearrin R M, et al. Multispecies mid-infrared absorption measurements in a hydrocarbon-fueled scramjet combustor[J]. Journal of Propulsion and Power, 2014, 30(6) : 1595-1604. doi: 10.2514/1.B35261
    [12] Hong Z K, Farooq A, Barbour E A, et al. Hydrogen peroxide decomposition rate : a shock tube study using tunable laser absorption of H2O near 2.5 ��m [J]. Journal of Physical Chemistry A, 2009, 113(46) : 12919-12925. doi: 10.1021/jp907219f
    [13] Vasu S S, Davidson D F, Hanson R K. OH time-histories during oxidation of n-heptane and methylcyclohexane at high pressures and temperatures[J]. Combustion and Flame, 2009, 156(4) : 736-749. doi: 10.1016/j.combustflame.2008.09.006
    [14] Hong Z K, Cook R D, Davidson D F, et al. A shock tube study of OH + H2O2 �� H2O + HO2 and H2O2 + M �� 2OH+M using laser absorption of H2O and OH[J]. Journal of Physical Chemistry A, 2010, 114(18) : 5718-5727. doi: 10.1021/jp100204z
    [15] Hanson R K. Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems[J]. Proceedings of the Combustion Institute, 2011, 33(1) : 1-40. doi: 10.1016/j.proci.2010.09.007
    [16] Hong Z K, Davidson D F, Hanson R K. An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements[J]. Combustion and Flame, 2011, 158(4) : 633-644. doi: 10.1016/j.combustflame.2010.10.002
    [17] Ren W, Jeffries J B, Hanson R K. Temperature sensing in shock-heated evaporating aerosol using wavelength-modulation absorption spectroscopy of CO2 near 2.7μm[J]. Measurement Science & Technology, 2010, 21(10) :105603. https://www.researchgate.net/publication/230950653_Temperature_sensing_in_shock-heated_evaporating_aerosol_using_wavelength-modulation_absorption_spectroscopy_of_CO2_near_27_m
    [18] Meyers J M, Fletcher D. Diode laser absorption sensor design and qualification for CO2 hypersonic flows[J]. Journal of Thermophysics and Heat Transfer, 2011, 25 �� 193-200. https://www.researchgate.net/publication/271036215_Diode_Laser_Absorption_Sensor_Design_and_Qualification_for_CO2_Hypersonic_Flows
    [19] Ren W, Davidson D F, Hanson R K. IR laser absorption diagnostic for C2H4 in shock tube kinetics studies[J]. International Journal of Chemical Kinetics, 2012, 44(6) : 423-432. doi: 10.1002/kin.v44.6
    [20] Hanson R K, Davidson D F. Recent advances in laser absorption and shock tube methods for studies of combustion chemistry[J]. Progress in Energy and Combustion Science, 2014, 44 (5) : 103-114. https://www.researchgate.net/publication/301174395_Measurement_of_H2O2_Broadening_Parameters_near_78_mm_with_a_Shock_Tube
    [21] Chao X, Jeffries J B, Hanson R K. Real-time, in situ, continuous monitoring of CO in a pulverized-coal-fired power plant with a 2.3��m laser absorption sensor[J]. Applied Physics B : Lasers and Optics, 2013, 110(3) : 359-365. doi: 10.1007/s00340-012-5262-8
    [22] Sun K, Sur R, Jeffries J B, et al. Application of wavelength-scanned wavelength-modulation spectroscopy H2O absorption measurements in an engineering-scale high-pressure coal gasifier[J]. Applied Physics B : Lasers and Optics, 2014, 117(1) : 411-421. doi: 10.1007/s00340-014-5850-x
    [23] Sur R, Sun K, Jeffries J B, et al. Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4 and H2O in a high-pressure engineering-scale transport-reactor coal gasifier[J]. Fuel, 2015, 150 : 102-111. doi: 10.1016/j.fuel.2015.02.003
    [24] Rapson T D, Dacres H. Analytical techniques for measuring nitrous oxide[J]. Trac-Trends in Analytical Chemistry, 2014, 54 : 65-74. doi: 10.1016/j.trac.2013.11.004
    [25] Sajid M B, Javed T, Farooq A. High-temperature measurements of methane and acetylene using quantum cascade laser absorption near 8��m[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 155 : 66-74. doi: 10.1016/j.jqsrt.2015.01.009
    [26] Cao Y C, Sanchez N P, Jiang W Z, et al. Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser[J]. Optics Express, 2015, 23(3) : 2121-2132. doi: 10.1364/OE.23.002121
    [27] Bielecki Z, Stacewicz T, Wojtas J, et al. Application of quantum cascade lasers to trace gas detection[J]. Bulletin of the Polish Academy of Sciences �� Technical Sciences, 2015, 63(2) : 515-525. https://www.researchgate.net/profile/Jacek_Wojtas/publication/281161553_Application_of_quantum_cascade_lasers_to_trace_gas_detection/links/5615ff5e08aec6224411f3e4.pdf
    [28] Couto F M, Sthel M S, Castro M P, et al. Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production[J]. Applied Physics B : Lasers and Optics, 2014, 117(3) : 897-903. doi: 10.1007/s00340-014-5906-y
    [29] Schad F, Eitel F, Wagner S, et al. A quantum cascade laser based mid-infrared sensor for the detection of carbon monoxide and nitrous oxide in the jet of a microwave plasma preheated auto-ignition burner[A]. //2013 Conference on and International Quantum Electronics Conference Lasers and Electro-Optics Europe (Cleo Europe/Iqec)[C]. Munich, 2013. https://www.osapublishing.org/conference.cfm?meetingid=90&yr=2013
    [30] Schad F, Eitel F, Wagner S, et al. A quantum cascade laser based mid-infrared sensor for the detection of carbon monoxide and nitrous oxide in the jet of a microwave plasma preheated auto-ignition burner[A]. //2013 Conference on and International Quantum Electronics Conference Lasers and Electro-Optics Europe (Cleo Europe/Iqec)[C]. Munich, 2013. doi: 10.1007/s00340-014-5884-0
    [31] Spearrin R M, Goldenstein C S, Schultz I A, et al. Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy[J]. Applied Physics B : Lasers and Optics, 2014, 117(2) : 689-698. doi: 10.2514/1.B35261
    [32] Schultz I A, Goldenstein C S, Spearrin R M, et al. Multispecies midinfrared absorption measurements in a hydrocarbon-fueled scramjet combustor[J]. Journal of Propulsion and Power, 2014, 30(6) : 1595-1604. doi: 10.1364/AO.53.001938
    [33] Spearrin R M, Goldenstein C S, Jeffries J B, et al. Quantum cascade laser absorption sensor for carbon monoxide in high-pressure gases using wavelength modulation spectroscopy[J]. Applied Optics, 2014, 53(9) : 1938-1946. doi: 10.1016/j.proci.2010.05.014
    [34] Ren W, Farooq A, Davidson D F, et al. CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7μm [J]. Applied Physics B : Lasers and Optics, 2012, 107(3) : 849-860.
    [35] Chao X, Jeffries J B, Hanson R K. In situ absorption sensor for NO in combustion gases with a 5.2��m quantum-cascade laser[J]. Proceedings of the Combustion Institute, 2011, 33(1) : 725-733. doi: 10.1364/AO.52.002893
    [36] Ren W, Farooq A, Davidson D F, et al. CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7��m [J]. Applied Physics B : Lasers and Optics, 2012, 107(3) : 849-860. doi: 10.1364/AO.52.004827
    [37] Caswell A W, Roy S, An X, et al. Measurements of multiple gas parameters in a pulsed-detonation combustor using time-division-multiplexed Fourier-domain mode-locked lasers[J]. Applied Optics, 2013, 52(12) : 2893-2904. doi: 10.1088/0957-0233/25/12/125103
    [38] Liu C, Xu L J, Cao Z. Measurement of nonuniform temperature and concentration distributions by combining line-of-sight tunable diode laser absorption spectroscopy with regularization methods[J]. Applied Optics, 2013, 52(20) : 4827-4842. doi: 10.1007/s00340-013-5644-6
    [39] Lewicki R, Tittel F K, Tarka J, et al. Mid-infrared semiconductor laser based trace gas sensor technologies for environmental monitoring and industrial process control[A].//Proceedings of SPIE 8631, Quantum Sensing and Nanophotonic Devices X[C]. San Francisco, 2013. [39] Lewicki R, Tittel F K, Tarka J, et al. Mid-infrared semiconductor laser based trace gas sensor technologies for environmental monitoring and industrial process control[J]. Quantum Sensing and Nanophotonic Devices X, M. Razeghi, E. Tournie, and G.J. Brown, Editors, 2013.
    [40] Lackner M. Tunable diode laser absorption spectroscopy (TDLAS) in the process industries-a review[J]. Reviews in Chemical Engineering, 2007, 23(2) : 65-147.
    [41] Spagnolo V, Kosterev A A, Dong L, et al. NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser[J]. Applied Physics B : Lasers and Optics, 2010, 100(1) : 125-130. doi: 10.1007/s00340-010-3984-z
    [42] Lewicki R, Tittel F K, Tarka J, et al. Mid-infrared semiconductor laser based trace gas sensor technologies for environmental monitoring and industrial process control[A].//Proceedings of SPIE 8631, Quantum Sensing and Nanophotonic Devices X[C]. San Francisco, 2013. [39] Lewicki R, Tittel F K, Tarka J, et al. Mid-infrared semiconductor laser based trace gas sensor technologies for environmental monitoring and industrial process control[J]. Quantum Sensing and Nanophotonic Devices X, M. Razeghi, E. Tournie, and G.J. Brown, Editors, 2013. doi: 10.5194/acp-11-9721-2011
    [43] Lackner M. Tunable diode laser absorption spectroscopy (TDLAS) in the process industries-a review[J]. Reviews in Chemical Engineering, 2007, 23(2) : 65-147. doi: 10.1016/j.proci.2010.05.014
    [44] Spagnolo V, Kosterev A A, Dong L, et al. NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser[J]. Applied Physics B : Lasers and Optics, 2010, 100(1) : 125-130. doi: 10.1007/s00340-011-4839-y
    [45] Gong L, Lewicki R, Griffin R J, et al. Atmospheric ammonia measurements in Houston, TX using an external-cavity quantum cascade laser-based sensor[J]. Atmospheric Chemistry and Physics, 2011, 11(18) : 9721-9733. doi: 10.1073/pnas.0604238103
    [46] Chao X, Jeffries J B, Hanson R K. In situ absorption sensor for NO in combustion gases with a 5.2��m quantum-cascade laser[J]. Proceedings of the Combustion Institute, 2011, 33(1) : 725-733. doi: 10.2514/1.B35648
    [47] Chao X, Jeffries J B, Hanson R K. Wavelength-modulation-spectroscopy for real-time, in situ NO detection in combustion gases with a 5.2 ��m quantum-cascade laser[J]. Applied Physics B : Lasers and Optics, 2012, 106(4) : 987-997. doi: 10.1007/s00340-012-5269-1
    [48] Pushkarsky M, Tsekoun A, Dunayevskiy I G, et al. Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(29) : 10846-10849. doi: 10.1007/s10409-012-0104-9
  • 加载中
图(15)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  20
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-20
  • 修回日期:  2016-06-15
  • 发布日期:  2016-09-20
  • 刊出日期:  2016-09-01

目录

    /

    返回文章
    返回